• Title/Summary/Keyword: Mass Production

Search Result 3,543, Processing Time 0.03 seconds

Physico-Chemical and Sensory Properties of Commercial Korean Traditional Soy Sauce of Mass-Produced vs. Small Scale Farm Produced in the Gyeonggi Area (한식 간장의 이화학 및 관능적 특성 - 대기업 시판 제품과 경기지역 소규모 농가 생산 제품의 비교 -)

  • Choi, Nam-Soon;Chung, Seo-Jin;Choi, Ji-Yeon;Kim, Hye-Won;Cho, Jung-Joo
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.553-564
    • /
    • 2013
  • The core ingredient of traditional Korean style soy sauce is soy bean without any wheat or rice incorporated. National brands as well as regional micro-brewed companies constitute the soy sauce market in Korea. The present study investigated the physico-chemical and sensory properties of soy sauces produced by small-scale or mass-production. Additionally, the key physico-chemical parameters sufficiently representing the critical sensory characteristics have been identified. Ten types of soy sauce brewed by the Korean traditional method were selected for the study. Among these samples, seven types were brewed in small-scales in the Gyeonggi-do region whereas the other 3 types were mass-production products of major national brands. The total solid, reducing sugar, salinity, sugar content, amino nitrogen, CIELAB, acidity, and pH of soy sauce samples were measured for the physico-chemical analysis. A generic descriptive analysis was conducted to analyze the sensory characteristics of the samples using six trained panelists. The descriptive panel developed 21 sensory attributes. The data were statistically analyzed using ANOVA, PCA and PLSR. Overall, the micro-brewed products showed significantly higher value of salinity and acidity but lower content of reducing sugar than the mass-production products. The micro-brewed soy sauces elicited stronger fermented flavor, sourness, and bitterness whereas the national brand products elicited stronger alcoholic odor, sweetness and umami taste. Sugar content, acidity, and amino nitrogen showed strong relationships with fish sauce flavor, umami taste, and rich flavor. Salinity was closely related to the overall flavor intensity.

Use of Sucrose-Agar Globule with Root Exudates for Mass Production of Vesicular Arbuscular Mycorrhizal Fungi

  • Thangaswamy Selvaraj;Kim, Hoon
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.60-63
    • /
    • 2004
  • A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.

In Vitro Assay of Mammary Gland Tissue Specific hEPO Gene Expression (hEPO 유전자의 유선조직 특이적 발현에 대한 In Vitro 검정)

  • Koo, Bon Chul;Kwon, Mo Sun;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.40 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Effectiveness of transgene transfer into genome is crucially concerned in mass production of the bio-pharmaceuticals using genetically modified transgenic animals as a bioreactor. Recently, the mammary gland has been considered as a potential bioreactor for the mass production of the bio-pharmaceuticals, which appears to be capable of appropriate post-translational modifications of recombinant proteins. The mammary gland tissue specific vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals. In this study, to minimize physiological disturbance caused by constitutive over-expression of the exogenous gene, we constructed new retrovirus vector system designed for mammary gland-specific expression of the hEPO gene. Using piggyBac vector system, we designed to express hEPO gene under the control of mammary gland tissue specific and lactogenic hormonal inducible goat ${\beta}$-casein or mouse Whey Acidic Protein (mWAP) promoter. Inducible expression of the hEPO gene was confirmed using RT-PCR and ELISA in the mouse mammary gland cells treated with lactogenic hormone. We expect the vector system may optimize production efficiency of transgenic animal and reduce the risk of global expression of transgene.

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.

Kinetic Modeling of Submerged Culture of A. blazei with Mixed Carbon Sources of Glucose and Dextrin

  • Na Jeong-Geol;Kim Hyun-Han;Chang Yong-Keun;Lee Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1331-1337
    • /
    • 2006
  • A mathematical model has been proposed for the batch culture of Agaricus blazei with mixed carbon sources of glucose and dextrin. In the proposed model, the metabolism of A. blazei was divided into three parts: cell growth, exopolysaccharides (EPS) production, and another EPS production pathway activated by dextrin hydrolysis. Each pathway was described mathematically and incorporated into the mechanistic model structure. Batch cultures were carried out with six different carbon source compositions. Although parameters were estimated by using the experimental data from the two extreme cases such as glucose only and dextrin only, the model represented well the profiles of glucose, cell mass, and EPS concentrations for all the six different carbon source mixtures, showing a good interpolation capability. Of note, the lag in EPS production could be quite precisely predicted by assuming that the glucose-to-cell mass ratio was the governing factor for EPS production.

Enhanced Production of Maltotetraose-producing Amylase by Recombinant Bacillus subtilis LKS88 in Fed-batch Cultivation

  • KIM, DAE-OK;KYUNGMOON PARK;JAE-WOOK SONG;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.417-422
    • /
    • 1997
  • Recombinant Bacillus subtilis LKS88[pASA240] containing the amylase gene from Streptomyces albus KSM-35 was exploited in fed-batch cultivation for mass production of maltotetraose-producing amylase. The effects of dissolved oxygen, additional organic nutrients (peptone and yeast extract) and mixed carbon sources (glucose plus soluble starch) on amylase production were examined in fed-batch operations in an effort to determine the optimum conditions for a maximum amylase productivity. Under the optimum conditions, maximum amylase activity was about 4.2 times higher than that obtained in batch cultivations, indicating that mass production of maltotetraose-producing amylase could be accomplished in fed-batch cultivation of the recombinant B. subtilis strain.

  • PDF

A Study on the Statistical Status of By-products from Korean Seafood processing for Utilization of Biomaterials (바이오소재 활용을 위한 국내 수산가공부산물의 통계 현황 연구)

  • Soeon, Ahn;Duckhee, Jang;Do-Hyung, Kang
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • By-products from fisheries produced in Korea are of the same industrial material as imported raw materials and are valuable resources for marine bioindustries. Securing raw materials for the mass production of functional materials is one of the main objectives for marine bioindustrial development. The use of fishery by-products as raw materials is anticipated to increase rapidly as the biomarket is growing into a promising industry. In this study, data were acquired from an open-source environment to perform exploratory data analysis, and various visualization methods were used to compare fishery production to the production of marine processed products in the year 2020. This study suggested that the amount of seafood processing, types of processing items, and areas where fishery processing residue is generated, should be able to secure hygienic raw material supply in large quantities. Thus far, it has been found that the Gyeonggi-do and Busan province, where HACCP-certified processing facilities are concentrated, and the local government Seafood Cluster and the Smart Aquaculture Cluster are at the forefront of stable, mass production of raw materials.

Manure Based Duckweed Production in Shallow Sink : Effect of Genera on Biomass and Nutrient Yield of Duckweed under the Same Nutritional and Management Conditions

  • Chowdhury, S.A.;Sultana, N.;Huque, K.S.;Huque, Q.M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.686-693
    • /
    • 2000
  • Biomass yield, nutritive value and nutrient utilization efficiency of different genera of duckweed (DW, Lemnaceae) under the same nutritional and management conditions were studied. Three genera of DW namely: Lemna perpusilla, Spirodela polyrhiza and Woljfia arrhiza, were cultivated in 18 plastic sinks each of $59{\times}54{\times}35cm^3$ size. Each sink contained approximately 80 L of water and was charged once with 6.648 kg of anaerobically fermented cow dung effluent. The seed rate for Spirodela, Lemna and Wolffia were 600, 400 and $600g/m^2$ respectively. Duckweed were harvested at 48 hours intervals. Media total N concentration for Lemna and Wolffia gradually increased with time. Growth of duckweed was measured by subtracting the inoculum from the total biomass production. Growth of Spirodela ceased within 4 days but Lemna and Wolffia continue to grow up to 34 days. Bio-mass yield was significantly (p<0.05) higher in Wolffia (906 kg/ha/d) than Lemna (631 kg/ha/d). Dry matter (DM) yield was very similar in Lemna (14.80 kg/ha/d) and Wolffia (14.57 kg/ha/d). The N content was non-significant higher in Lemna (5.45%) than Wolffia (5.00%) and Spirodela (4.6%). The crude protein (CP, $N{\times}6.25$) yield was non-significantly higher in Lemna (4.83 kg/ha/d) than Wolffia (4.32 kg/ha/d). The acid detergent fibre (ADF) content was the highest in Wolffia (28.59%), followed by Spirodela (19.47%) and Lemna (12.39%). Utilization efficiency of CP was 273 and 314% respectively for Wolffia and Lemna. However, similar efficiency values for Spirodela was only 1.5%. Considering the bio-mass yield, nutritive value and nutrient utilization efficiency, production performance of DW were in the order of Lemna>Wolffia>Spirodela under the present experimental conditions.