• 제목/요약/키워드: Mass Disaster

검색결과 232건 처리시간 0.027초

다수사상자사고 대응 실습교육 프로토콜 개발 및 효과성 검증 (Development and evaluation of training protocols for mass casualty incidents during disaster response)

  • 박주호;한승우
    • 한국응급구조학회지
    • /
    • 제26권3호
    • /
    • pp.121-135
    • /
    • 2022
  • Purpose: The purpose of this study was to develop a training protocol to standardize the management of mass casualties as part of the disaster response, and to verify the effectiveness of the training protocol. Methods: The study was conducted as a quasi-experimental study with a non-equivalent control group and pretest-posttest design. The protocol was divided into 5 parts, the first for the advance party, the second for the rescue team, the third for the paramedic team, the fourth for the ambulance team, and the fifth for the 119 EMS team. This study was conducted on November 15, 2021 and consisted of 21 subjects in the final experimental group and 23 subjects in the control group. In this study, the prior homogeneity test was analyzed using the χ2-test, intragroup comparisons were analyzed using the paired t-test, and intragroup comparisons were analyzed using the independent t-test. Results: The protocol was developed in five parts: advance party, rescue team, paramedics team, ambulance team, and 119 EMS team. In verifying the effectiveness of the protocol, it was found that there were significant differences in self-efficacy (t=-0.941, p=0.001) and self confidence within the group (t=-0.025, p=0.001) after the implementation of the mass casualty incident response training program. However, there was no significant difference between the experimental and control groups. Conclusion: Based on the findings of this study, it is believed that disaster response personnel can experience lower levels of anxiety and tension in disaster situations if they receive practical and realistic education and training. In the future, it is necessary to enhance protocol based practical education that can improve the knowledge and skills of each team and individual.

토사재해 위험지역의 구조적 대안 설정을 위한 사태물질 초기 질량분포 및 방어시설물 형상의 영향 분석 (Analysis of Initial Mass Distribution and Facility Shape to Determine Structural Alternative for Hazardous Zone Vulnerable to Debris Flow Disaster)

  • 성주현;오승명;정영훈;변요셉;송창근
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.76-82
    • /
    • 2016
  • A 2-D hydrodynamic model for predicting the movement of debris flow was developed. The developed model was validated against a dam break flow problem conducted in EU CADAM project, and the performance of the model was shown to be satisfactory. In order to suggest structural alternative for hazardous zone vulnerable to debris flow disaster, two types of initial mass distribution and two shapes of defensive structure were considered. It was found that 1) the collapse of debris mass initiated with square pyramid shape induced more damage compared with that of cubic shape; and 2) a defensive structure with semi-circular shape was vulnerable to debris flow disaster in terms of debris control or primary defense compared with that of rectangular-shaped structure.

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation

  • Lu, Lei;Fermandois, Gaston A.;Lu, Xilin;Spencer, Billie F. Jr.;Duan, Yuan-Feng;Zhou, Ying
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.589-613
    • /
    • 2019
  • Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results show that the chosen model of the rotary mass part can provide better estimation on the damper's performance, and it is better to use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary simulation of the cable responses.

불연속면을 고려한 암반의 안정변형해석 (Stability and Deformation Analysis Considering Discontinuities in Rock Mass)

  • 황재윤
    • 터널과지하공간
    • /
    • 제25권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 암반에는 단층 절리 층리 균열 편리 벽개 등 불연속면이 포함되어 있다. 따라서, 불연속면을 포함한 암반의 역학적 거동은 연속체와는 다르게 불연속면의 역학적 거동에 좌우된다. 본 연구에서는 불연속면을 고려한 암반의 안정변형해석기법을 제안하고, 암반 붕괴재난현장에 적용했다. 암반 불연속면을 고려하여 평사투영법에 의한 안정해석과 개별절리요소를 포함한 유한요소법에 의한 변형해석 프로그램을 개발하여, 실제 암반 붕괴 재난현장 지역에서의 해석결과와 비교 및 검토를 하였다. 암반 현장에 적용하여 결과를 비교 검토함으로써, 암반의 파괴 거동 해석에 있어서 개발한 불연속면을 고려한 암반의 안정변형해석법의 적용성에 대한 검증을 하였다.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

지상검지장치를 통한 열차운전의 안전성 확보 방안 (Proposal for the safety assurance of train operation by applying wayside detection system)

  • 민준성;이진행;조영완
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.618-622
    • /
    • 2007
  • In the past decades, complain about ground vibration and noise induced by pile driving has been quickly increased. Because of that, auger The role of train has expanded as mass transportation according to the increase of train passenger. The train operation personnel are more emphasis on the safety of train operation due to the increase of train's role. The reason is that the train transports many people daily. So, if there is natural disaster, such as earthquake, flood, high temperature, and so on, it will become disaster. Therefore, this paper introduces and proposes wayside detection system, which can be helpful for the safety assurance of train operation.

  • PDF

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

대규모 인명피해 발생에 따른 재난관리체계 개선 방안 (The Study on Improved Disaster Management System in Case of Large-scale Mass Casualties)

  • 유병태;고재욱
    • 한국안전학회지
    • /
    • 제30권2호
    • /
    • pp.77-82
    • /
    • 2015
  • When accidents that relate to a large numbers of people occur, such as disasters involving group tours by ship or aircraft, or large-scale chemical leakages, it is very important to know the personal identification of victims and to determine their locations and status. It is true that there will be serious damage or injury to people who engaged especially when information does not transfer properly or people get inaccurate one. In this study, therefore, we analysed the disaster response management system for rescued people of the Sewo ferry sinking accident. Based on the analysis we proposed to improve the real-time disaster management system with ICT(Information & Communication Technology).