• Title/Summary/Keyword: Mass Burning Rate

Search Result 69, Processing Time 0.027 seconds

Pool Combustion of Iso-Propanol Fuel including IPA and PCBs in different Type Vessels

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • On the refutation demanded for a control of various toxic substances. PCBs(poly chlorinated biphenyl) has a fatal poisonous matter in the ecosystem and the environmental pollution as it Is a kind of stable chemical substance. Especially, the gross Product of PCBs is estimated at about one million tonnage all over the world. However it is kept on storing in untreated state, then has a deterioration by the Prolonged storage and a risk of overflowing. Therefore, this research examined the fundamental characteristics of combustion and emission for the target of using the IPA (iso-propyl alcohol) solution as a part of PCBs control. IPA was filled to three kinds of Vessel, i.e. Vessel I, II, and III, and then was investigated as follows combustion shape, flame temperature. mass burning velocity, and PM(Particulate matter). A radial thermometer and a C-A thermocouple measured the flame temperature, and the optical extinction method by using He-Ne laser and the filter weight method used in the PM measurement. As a result, with an increasing of L/S ratio, the flame length become shorter and the burning velocity is more rapid, but the particulate matters is higher. It is supposed that the air flow rate is high on Vessel. and then the combustion is Promoted in the surface area of the upstream zone. The future works plan to investigate the characteristics with an using of the mixing of IPA and PCBs

Design and Hot Fire Tests of the Pyrostarter for Liquid Rocket Engines (액체로켓엔진용 파이로시동기의 설계 및 연소시험연구)

  • Kang, Sang Hun;Jang, Jesun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.48-55
    • /
    • 2014
  • In present study, design and hot fire tests of the pryostarter are conducted. To prevent the turbopump RPM overshoot, regressive mass flow rate profile is applied. Sudden decrease of the mass flow rate at the end of the propellant burning is realized as well. Firing test results show good agreements with the design requirements. Through the study with ignition substance variations, combustion products and ignition performances are improved.

A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials (팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구)

  • Chun, Kwan-Ok;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

Conceptual Design of Small Scale Rocket (소형 고체 로켓에 대한 개념 설계)

  • Kwak, Jung-Han;Kim, Een-Ju;Kim, Hyung-Jun;Park, Gun-Tae;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.374-377
    • /
    • 2007
  • 본 보고서는 소형 로켓 제작에 앞서 행해지는 설계 단계를 기술하였다. 각 요구 조건에 맞춰 사용되어질 추력, 추진제 특성, mass distribution, 동체 형상 설계, Motor 설계에 대해 다뤘다. 로켓 설계에 있어서 가장 중요한 추진제 선정과 노즐형상 설계를 중점적으로 다루었으며, 차후 본 과정에 의하여 소형로켓을 제작하겠다.

  • PDF

The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines (기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향)

  • 권병철;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

Sensitivity Analysis of the CMB Modeling Results by Considering Photochemical Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Seoul atmosphere (서울 대기에서 PAHs 광화학반응을 고려한 CMB 수용모델 결과 검토)

  • Cho, Ye Seul;Jung, Da Bin;Kim, In Sun;Lee, Ji Yi;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Several studies have been carried out on the source contribution of the particulate Polycyclic Aromatic Hydrocarbons (PAHs) over Seoul by using the Chemical Mass Balance Model (CMB)(Lee and Kim, 2007; Kim et al., 2013). To confirm the validity of the modeling results, the modified model employing a photochemical loss rate along with varying residence times and the standard model that considers no loss were compared. It was found that by considering the photochemical loss rate, a better performance was obtained as compared to those obtained from the standard model in the CMB calculation. The modified model estimated higher contributions from coke oven, transportation, and biomass burning by 4 to 8%. However, the order of the relative importance of major sources was not changed, coke oven followed by transportation and biomass burning. Thus, it was concluded that the standard CMB model results are reliable for identifying the relative importance of major sources.

조사연구-콘칼로리메타를 이용한 화재시험에 대하여

  • Lee, Du-Hyeong
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.22-28
    • /
    • 1995
  • The rate of heat release is probably the single most important measure of fire hazard. Several tech-niques were developed for the measurement of rate of heat release, but were not suitable for fire test-ing purpose. Recently the application of oxygen consumption principle made it possible to development of well-characterized heat release rate measurement apparatus, the furniture calorimeter for large-scale fire tests and the cone calorimeter for bench-scale fire tests. The cone calorimeter can be used to determine the ignitability as well as heat release rate and smoke development, mass loss rate, combustion gas production etc. from burning materials. Thus, test method using cone calorimeter, an internationally recognized and accepted for the evalua-tion of fire properties, is a very promising tool for combustion study on various kind of materials and products.

  • PDF

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

Prediction for Slag Mass Accumulation in the Kick Motor (킥모터 슬래그 적층량 예측)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Accumulated slag mass was predicted to estimate accurate performance of kick motor (KM) system. The validation of numerical analysis was performed with mass flow rate measured at the 4th ground test of the KM. The study described here includes the internal flow field of KM at various time steps during burning. Slag mass accumulation was analyzed through the aluminum oxide particle paths to predict slag mass deposition. Numerical analysis to solve both flow field and droplet accumulation was performed with Fluent 6.3 program. Analysing the effects of the acceleration, starting position and diameters of the aluminum oxide particles, total slag mass accumulation was obtained.

Paraffin-based ramjet missile preliminary design

  • Rogerio L.V. Cruz;Carlos A.G. Veras;Olexiy Shynkarenko
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.317-334
    • /
    • 2023
  • This paper presents a basic methodology and a set of numerical tools for the preliminary design of solid-fueled ramjet missiles. An elementary code determines the baseline system configuration comprised of warhead, guidance-control, and propulsion masses and geometries from specific correlations found in the literature. Then, the system is refined with the help of external and internal ballistics codes. Equations of motion are solved for the flight's ascending, cruising, and descending stages and the internal ballistic set of equations designs the ramjet engine based on liquefying fuels. The combined tools sized the booster and the ramjet sustainer engines for a long-range missile, intended to transport 200 kg of payload for more than 300 km range flying near 14,000 m altitude at Mach 3.0. The refined system configuration had 600 mm in diameter and 8,500 mm in length with overall mass of 2,128 kg and 890 kg/m3 density. Ramjet engine propellant mass fraction was estimated as 74%. Increased missile range can be attained with paraffin-polyethylene blend burning at near constant regression rate through primary air mass flow rate control and lateral 2-D air intakes.