• 제목/요약/키워드: Mass Balance Model

검색결과 279건 처리시간 0.028초

망간단괴 용융환원 제련공정의 물질 및 열수지 모델링 (A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules)

  • 조문경;박경호;민동준
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

전산유체역학을 이용한 실규모 오존 접촉에서의 수리거동과 유효 체적 평가에 관한 연구 (Evaluating Effective Volume and Hydrodynamic Behavior in a Full-Scale Ozone Contactor with CFD Simulation)

  • 박노석;;;배철호;이선주
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.656-665
    • /
    • 2004
  • An Ozone reaction model combined with CFD(Computational Fluid Dynamics) technique was developed in this research, in the simulation of ozonation, hydrodynamic behavior as well as reaction model is important because ozone is supplied to treated water as gas ozone. In order to evaluate hydrodynamic behavior in an ozone contactor, CFD technique was applied. CFD technique elucidated hydrodynamic behavior in the selected ozone contactor, which consisted of three main chambers. Three back-mixing zones were found in the contactor. The higher velocities of water were observed in the second and third compartments than that in the first compartment. The flow of the opposite direction to the main flow was observed near the water surface. Based on the results of CFD simulation, the ozone contactor was divided into small compartments. Mass balance equations were established were established in each compartment with reaction terms. This reaction model was intended to predict dissolved ozone concentration, especially. We concluded that the model could predict favorably the mass balance of ozone, namely absorption efficiency of gaseous ozone, dissolved ozone concentration and ozone consumption. After establishing the model, we discussed the effect of concentration of gaseous ozone at inlet, temperature and organic compounds on dissolved ozone concentration.

CHARACTERIZATION OF POOL-RIFFLE SEQUENCES IN SOLUTE TRANSPORT MODELING OF STREAMS

  • Seo, Il-Won;Yu, Dae-young
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.171-185
    • /
    • 2000
  • A mathematical model to adequately predict complex mixing characteristics of sorptive polluants in natural streams with pools-and-riffes has been developed. In this model, sorption of pollutants onto the bed sediment as well as mass storage and exchange in the storage zones were incorporated into one-dimensional mass balance equatins. The geometric and hydraulic characteristics of the pool-riffle sequences were properly conceptualized. Simulations with parameters of pool-and-riffle streams better fit the measured data in overall shape and peak concentration than simulations with parameters for uniform channels. The analyses on the characteristics of the storage zone model parameters reveal that a linear relationship between the logrithm of the storage zone volume ratio and a function of the friction factor exists. A linear relatiohship might also be tenatively assumed between the logarithm of the dimensionless mass exchange coefficient and the logarithm of the aspect ratio of the storage zone if some of the high values of the dimensionless mass exchange coefficient collected on the successive bed forms are excluded.

  • PDF

연료전지 전극(Cathode)의 성능해석 및 설계에 관한 연구 (A Study on the Performance Analysis and Design of Cathode in Fuel Cells)

  • 김홍건;강성수;송하영;강영우;곽이구
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.75-79
    • /
    • 2007
  • The cathode design is one of the most important parts in order to enhance the performance of fuel cells. A 3-D model of the porous oxygen reducing cathode with perforated current collectors is analysed for the enhanced design in fuel cells. Simulation is performed using equations of electric potential balance, momentum balance, and mass balance. The gas concentrations are quite large and are significantly affected by the reactions that take place. The weight fraction of oxygen, velocity field for the gas phase, and local overvoltage are illustrated in the porous reactive cathode layer. The current density is also analysed and the result shows the distribution and variation are stated in a wide range. It is found that the rate of reaction and the current production is higher beneath the orifice, and decreases as the distance to the gas inlet increases. The significance of the results is discussed in the viewpoint of the mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in this design and at these conditions.

LOICZ 모델을 이용한 곰소만, 근소만 갯벌어장 물질수지 산정 (Mass Balance Using the LOICZ Model in Gomso and Geunso Bays)

  • 최용현;조윤식;최윤석;전승렬
    • 해양환경안전학회지
    • /
    • 제23권7호
    • /
    • pp.869-877
    • /
    • 2017
  • 최근 전북 지역은 바지락 생산량이 감소하여 2015년에 전국 생산량의 17.8 %를 차지한 반면, 충남 지역은 점차 증가하여 49.1 %를 차지하였다. 갯벌은 다양한 저서생물이 서식하고 있고, 조석에 의해 물질이 유출 입되는 특성이 있기 때문에 만의 특성을 고려한 물질 수지를 이해하는 것이 중요하다. 본 연구에서는 2015년 5월과 8월에 곰소만과 근소만의 바지락 어장 지역과 외해지역의 차이를 비교하기 위해 3개의 해역(Sector I, Sector II, Control)으로 구분하고, LOICZ Model을 이용하여 물질수지를 산정하였다. 분석결과 바지락 성장이 활발한 5월에 바지락 양식장이 밀집한 곰소만과 근소만 Sector II의 DIP는 각각 -207.2 kg/day와 77.2 kg/day로 나타났고, DIN은 -4,996.7 kg/day와 926.6 kg/day로 나타났다. 주로 양식생물의 섭식작용에 큰 원인으로 보이며, 근소만보다 곰소만에서 바지락 밀식이 이루어지는 것으로 판단된다. 따라서 건강한 갯벌 생태계 유지와 지속적인 바지락 생산을 위해서는 밀식을 저감하기 위한 지속적인 관리가 필요하다.

수용모델(CMB)을 이용한 한반도에서 관측된 황사의 발원지 추정과 기여도에 대한 연구 (Source Apportionment and the Origin of Asian Dust Observed in Korea by Receptor Modelling (CMB))

  • 신선아;한진석;김신도
    • 한국대기환경학회지
    • /
    • 제22권2호
    • /
    • pp.157-166
    • /
    • 2006
  • Ambient TSP at four sites in Korea and soil samples from the source regions of Asian Dust in northern China were collected and analyzed for 15 metal components and 6 water-soluble ions to conduct a chemical mass balance (CMB). CMB receptor model was used to estimate the source contribution of TSP during the Asian Dust period, and the model results showed that China soil was the largest source contributor, accounting for 81% of TSP ($458.2{\mu}g/m^3$). Vehicle emission and geological sources contributed to about 8.8% and 4.4% of aerosol mass, followed by sea salt (1.5%) and secondary aerosol (2.9%). Fuel combustion and industrial process sources were found to be relatively minor contributors to TSP (${\leq}1%$). In addition to source contribution estimates, this study tried to identify the origin of Asian Dust observed in Korea. Among all 13 China soil profiles presented in this study, the most adoptable profile which can project the case well was selected and considered as the origin of the applied case.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

수동급기 직접 메탄올 연료전지의 동적 모델 (Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell)

  • 하승범;장익황;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발 (Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads)

  • 서한나;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권4호
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.