• Title/Summary/Keyword: Mass Balance Model

검색결과 279건 처리시간 0.025초

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Experimental investigations and development of mathematical model to estimate drop diameter and jet length

  • Roy, Amitava;Suneel, G.;Gayen, J.K.;Ravi, K.V.;Grover, R.B.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3229-3235
    • /
    • 2021
  • The key process used in nuclear industries for the management of radiotoxicity associated with spent fuel in a closed fuel cycle is solvent extraction. An understanding of hydrodynamics and mass transfer is of primary importance for the design of mass transfer equipment used in solvent extraction processes. Understanding the interfacial phenomenon and the associated hydrodynamics of the liquid drops is essential for model-based design of mass transfer devices. In this work, the phenomenon of drop formation at the tip of a nozzle submerged in quiescent immiscible liquid phase is revisited. Previously reported force balance based models and empirical correlations are analyzed. Experiments are carried out to capture the process of drop formation using high-speed imaging technique. The images are digitally processed to measure the average drop diameter. A correlation based on the force balance model is proposed to estimate drop diameter and jet length. The average drop diameter obtained from the proposed model is in good agreement with experimental data with an average error of 6.3%. The developed model is applicable in both the necking as well as jetting regime and is validated for liquid-liquid systems having low, moderate and high interfacial tension.

대기 분진의 무기 화학적 조성 분석과 Chemical Mass Balance에 의한 오염원 기여도 산출 (Characterization of Inorganic Chemicals in Total Suspended Particulates and a Source Apportionment by Chemical Mass Balance Model)

  • 서영화;구자공
    • 한국대기환경학회지
    • /
    • 제8권2호
    • /
    • pp.112-120
    • /
    • 1992
  • Twenty four metal, nonmetal elements and 4 major anions in total suspended particulates (TSP) collected at two sites in Daejon city from october to december in 1991 by a Hi-vol sampler were thoroughly analyzed by Inductively Coupled Plasma/ Atomic Emission Spectrometry (ICP/AES) and Ion Chromatography (IC). These analyzed data were used to perform a receptor modeling using the Chemical Mass Balance (CMB) for the source apportionment of TSP sample. Approximately 60% TSP weight in industrial complex area was influenced by potential industrial sources and 25% was by heating fuels and automobile emissions, whereas a half of TSP in residential area was influenced by surrounding environment and more than 35% of TSP was influenced by heating fuels. The CMB model provided source apportionment results reasonably and scientifically with a minor limitation.

  • PDF

열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구 (Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

A Modification of Departure from Nucleate Boiling Model Based on Mass, Energy, and Momentum Balance For Subcooled Flow Boiling in Vertical Tubes

  • Sul, Young-Sil;Lee, Kwang-Won;Ju, Kyong-In;Cheong, Jong-Sik;Yang, Jae-Young
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.108-113
    • /
    • 1996
  • Several analytical models for the departure from nucleate boiling (DNB) phenomenon have been developed during the last decade. Among these, Chang & Lee's model based on a bubble crowding mechanism is remarkable in the fundamental features characterized as the formulation of mass, energy, and momentum balance equation at thermal-hydraulic conditions leading to the DNB. However, Bricard and Souyri remarked that the assumption of stagnant bubbly layer at the DNB condition is questionable and the signs on the axial projections of the momentum fluxes at the core/bubbly layer interface in the momentum balance equations are erroneous. From this remark, Chang & Lee's model has been re-examined and modified by correcting the erroneous treatments in the momentum balance equations and removing the spurious assumptions. The revised model predicts well the extensive DNB data of water in uniformly heated tubes at low qualities and shows more accurate prediction compared with the original model.

  • PDF

직렬 4기통 엔진용 밸런스 샤프트 모듈의 불평형 질량 및 베어링 위치 선정 (Optimal Location Issue on both Supporting Bearing and Unbalance Mass of the Balance Shaft Module in a Inline 4-Cylinder Engine)

  • 이동원;김찬중;배철용;이봉현
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2010
  • Large quantity of bending deformation as well as irregular rotating torque fluctuation are the main struggles of the balance shaft module during a high speed rotation. Since two issues are much sensitive to the location of both supporting bearing and unbalance mass at a balance shaft, it is recommended to construct a design strategy on balance shaft at the early stage so as to save developing time and effort before approaches to the detailed design process. In this paper, an optimal design formulation is proposed to minimize the elastic strain energy due to bending as well as the kinematic energy of polar moment of inertia in rotation. Case studies of optimal design are conducted for different mass ratio as well as linear combination of objective function and its consequence reveals that global optimum of balance shaft model is existed over possible design conditions. Simulation shows that best locations of both supporting bearing and unbalance are globally 20% and 80%, respectively, over total length of a balance shaft.

해저 지중 피압유체의 흐름과 양수량 산출에 관한 3차원 수치모형의 개발 (A Development of 3-D Numeric Model for the Confined Flow and Discharge under Sea Ground)

  • 김상준
    • 한국해안·해양공학회논문집
    • /
    • 제22권6호
    • /
    • pp.387-396
    • /
    • 2010
  • 해저 지중 피압유체의 3차원 전이류에 대한 수치모형이 개발되었다. 개발된 모형은 FDM 모형으로서 Gauss-Seidel SOR(successive over-relaxation)을 사용하는 것을 특징으로 한다. 본 모형으로 산출된 수두분포는 Theis의 해석해와 비교하여 작은 오차범위 내에서 동일하였다. 또한 MODFLOW 모형을 이용한 산출도 근접한 결과를 보여주었다. 대수층의 측면유입량과 우물의 양수량을 비교하였으며, 이 경우 가중치 ${\alpha}$가 mass balance에 영향을 주는 것으로 확인되었다. 즉, 완전음해법(${\alpha}$=1)에서는 약 5%의 오차를 보여주었다. 그러나 ${\alpha}$가 점점 감소하면서 0.5(Crank and Nicolson method)에 이르기까지, mass balance는 연속적으로 악화되며, 모형 결과는 발산한다. 또한 $\lambda$(over-relaxation factor)에 따른 수렴속도는 ${\lambda}=0.8{\sim}1.5$에서 큰 차이가 없었으나 $\lambda$가 1.5를 초과하는 경우 모형 결과는 발산한다. 다중 우물 설치시 양수량 변화가 산출되었다. 즉, 우물 상호간의 위치가 너무 근접하게 되면 양수량을 저하시킨다. 본 모형은 이방성$(Kx{\neq}Ky{\neq}Kz)$과 비균질성을 고려할 수 있으며, 다양한 경계 조건을 설정함으로서 현장조건을 반영할 수 있다. 따라서 3차원 피압 전이류에서, 우물의 위치 선정, 양수량 산출, 인공주입에 따른 흐름의 거동예측 등에 효과적으로 이용될 수 있을 것으로 사료된다.

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

Sensitivity and Effects of Moving Water Table on Recharge Estimates

  • 이광열
    • 한국지반공학회지:지반
    • /
    • 제9권2호
    • /
    • pp.65-69
    • /
    • 1993
  • 강우에 의해 발생되는 토양(soil)에서의 Recharge를 구하기 위해 두가지 모델 즉, ((i) Simple Mass Balance Model (ii) Numerical Model : UNSAT 1)을 사용했는데, 이 두 모델들은 불포화상태의 흙(unsaturated zone : above groundwater table)에서 그의 가정과 개념에 약간 차이가 있다. Unsaturated Zone에서의이 두 모델의 적용에 있어서 몇가지 중요한 사항이 지적되고 있는데, 균질의 불포화 영역(unsaturated zone)의 토양에서 Mass Balance Model을 사용함으로써 얻은 Recharge는 UNSAT 1(numerical model)을 통해 얻은 결과와 비교할 때 서로 상이한 결과를 보였다. 또한, Recharge의 계산에 있어서 지하수위의 변화에 따른 영향을 알아보기 위해 Sensitivity Analysis를 수행하였다. 즉, 고정수위(fixed groundwater table)로 가정했을 때 발생되는 오차를 한개의 수리학적 계수(hydraulic parameter)의 함수로 보고 계산을 했으며 이 결과를 그림으로 나타내어 보았다. 이 연구의 결과는 Model Simulation에 있어서 수리학적 경계조건을 결정하는데 큰 도움이 될 것이며, 또한 이 연구에서는 Unsaturated-Saturated Flow Model이나 Drainage Model을 함께 병행시켜 Simulation을 수행하는데 촛점을 두고 있다.

  • PDF