Browse > Article

A Development of 3-D Numeric Model for the Confined Flow and Discharge under Sea Ground  

Kim, Sang-Jun (Dept. of Civil and Environmental Engineering, Kyungwon University)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.22, no.6, 2010 , pp. 387-396 More about this Journal
Abstract
A 3-D numeric model for the confined transient flow under sea ground have been developed. This is FDM model using Gauss-Seidel SOR (successive over-relaxation). This model shows the similar head distribution pattern to Theis analytic solution and MODFLOW simulation. The input flowrate to the aquifer and discharge of well have been compared. And it have been found that mass balance is influenced by the weight factor ${\alpha}$, i.e. fullyimplicit method (${\alpha}$=1) shows 5% error, but when ${\alpha}$ becomes to 0.5(Crank and Nicolson method) the mass balance becomes worse and the model result diverges. And the convergency of the model is not much different when $\lambda$ (over-relaxation factor)=0.8~1.5, but when $\lambda$>1.5, the model result diverges. The test-run shows that the well discharge becomes smaller when another well is near. This model can cover the isotropy$(Kx{\neq}Ky{\neq}Kz)$ and inhomogeneity, and can be used for the selection of well site, discharge calculation, and head prediction in case of the artificial recharge etc.
Keywords
Gauss-Seidel SOR; mass balance; Theis; MODFLOW;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gupta, S.K. and Tanji, K.K. (1976). A three-dimensional Galerkin finite element solution of flow through multiaquifers in Sutter basin. Water Resour. Res., 7, 774-786.
2 Gupta, R.S. (1989). Hydrologic and hydraulic systems. Prentice- Hall.
3 Lee, K.-S. (1995). Foundations of theoretical hydraulics with elementary numerical methods. Seoul national university.
4 McCuen, R.H. (1998). Hydrologic analysis and design, Prentice Hall.
5 McDonald, M.G. and Harbaugh, A.W. (1991). MODFLOW: A Modular three dimensionalfinitedifference flow model. IGWMC Groundwater modeling Software, International Ground Water Modeling Center.
6 Peters, J.H. and Visser, A.R. (1995). Ecological engineering and artificial recharge at Groot Berkheide. Articial recharge of groundwater II, ASCE.
7 Pinder, G.F. and Gray, W.G. (1997). Finite Element Simulation in surface and subsurface Hydrology, Academic Press.
8 Richard, M. (2010). Mastering VBA for office 2010. John Wiley and Sons.
9 Yamamoto, S. (1983). 김남형, 오윤근 공역(1997). 지하수 조사법. 동화기술.
10 Wang, H.F. and Anderson, M.P. (1982). Introduction to groundwater modelling. W.H. Freeman and Company.
11 Waterloo hydrogeologic Inc. (2002). Visual MODFLOW v.3.0 user's mannual.
12 Waterloo hydrogeologic Inc. (2002). MODFLOW packages reference manual.
13 나한나, 구민호, 차장환, 김용제 (2007). 지하수 모델의 주요 경계조건에 대한 민감도 분석사례. 한국지하수토양환경학회지, 12(3), 53-65.   과학기술학회마을
14 강정옥, 이소정, 김창균 (2005). 인공하수주입 및 양수에 따른 대수층의 수리학적 특성 연구. 대한환경공학회지, 27(9), 995-1005.
15 김구영, 이철우, 김용제, 김태희, 우남칠 (2004). 해안대수층에서 지하수-지표수 상호작용에 의한 지하수위 변화. 한국지하수토양환경학회지, 9(4), 32-41.   과학기술학회마을
16 김상준 (2008). 한강 하구역에서의 지하수위 변화에 관한 연구 (수중보 철거로 인한 영향). 한국해안.해양공학회지, 20(6), 589-601.
17 심병완, 정상용 (2003). SHARP 모델을 이용한 해안 대수층의 해수침투 경계면 추정. 한국지하수토양환경학회지, 8(1), 68-74.   과학기술학회마을
18 정창수, 홍기훈, 김석현, 김영일, 문덕수, 박준건, 최준선, 양동범 (2000). 진해만 환경평가를 위한 해저지하수의 중요성. 한국해양환경학회논문집, 3(4), 23-36.
19 한수영, 홍성훈, 박남식 (2006). 권역별 충적층 지하수의 해안 유출량 분포. 대한토목학회논문집, 21(3-B), 185-192.
20 Cheng, A.H-D. (2000). Multilayered aquifer system. Marcel Dekker Inc.
21 Fetter, C.W. (1994). Applied Hydrogeology, Prentice-Hall.