• 제목/요약/키워드: Mass Balance

검색결과 927건 처리시간 0.026초

액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발 (Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine)

  • 이상복;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.93-97
    • /
    • 2010
  • 액체로켓엔진 단계식 연소 사이클에 대한 에너지 발란스 프로그램을 개발하였다. 엔진을 추력실, 터보펌프, 터빈, 예연소기, 공급계 부품 등으로 모듈화 하여 각 모듈 프로그램을 제어하는 방식을 사용하였다. 이를 통해 에너지, 질유량, 압력의 균형을 맞추었으며 대표적인 단계식 연소 사이클인 스페이스 셔틀 메인 엔진의 자료를 바탕으로 비교 검증하였다.

  • PDF

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

한국인 수유부의 체조성 변화 및 에너지 평형 (Maternal Changes of Body Composition and Energy Balance in Korean Lactating Women)

  • 임현숙
    • Journal of Nutrition and Health
    • /
    • 제29권8호
    • /
    • pp.899-907
    • /
    • 1996
  • This study was conducted to examine how Korean women mange energy metabolism during lactation. Eighteen women recruited were healthy, had normal pregnancies and were required to breast-feed their babies exclusively for at least 12wks. During the study period, all subjects were visited and interviewed five times : 3d, 9d, 4wk, 8wk, and 12wk lactation. Body composition variables were analyzed by a bioelectrical impedance method, energy intakes were assessed by using the inventory-weighing method, energy expenditure were determined by recording daily activities, and milk energy output was investigated from the amount of milk production and the gross energy content of milk. The subjects consumed less energy than current recommended allowance all over the study period, but compatible with fairly adequate lactational performance. They responded the additional energy stress of lactation by enhancing metabolic efficiency, increasing energy intakes, reduction physical activities and mobilizing body reserves. Another finding in this study was that the reduction in body fat-free mass may be the one way that women meet the energy demands of lactation like the reduction in body fat mass. The results from this study suggest that current recommended additional energy need during lactation, 2.09MJ/d(500kcal/d), is too high for healthy Korean women. Our data also indicate that the changes of body composition and energy balance at earlier postpartum are extremely different from those at later periods.

  • PDF

생활폐기물 고형연료(RDF) 제조기술 경제성 평가 (An Economic Evaluation of MSW RDF Production Plant)

  • 최연석;최항석;김석준
    • 신재생에너지
    • /
    • 제7권1호
    • /
    • pp.29-35
    • /
    • 2011
  • The waste treatment fee and energy production effect of Wonju city RDF plant, the first RDF manufacturing plant in Korea, were investigated in the study. All plant operation data, like total weight of received wastes, produced RDF and separated rejects in processes were fully recorded for mass balance calculation of the plant in 2009. Also all consumed oil and electricity were recorded for energy balance calculation. The results showed that the waste treatment fee not including the RDF sales price of 25,000 won/ton-RDF was 116,573 won/ton-MSW and it went down to 105,298 won when included the RDF price. Produced RDF was 40.2% of total received waste in weight. Three components analysis by mass balance calculation of total received waste showed that Wonju city's MSW was 32.4% of combustible, 37.5% of water and 30.1% of incombustible respectively. Energy effect was found that total amount of produced energy was about 4 times more than that of consumed energy.

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • 제17권4호
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.

망간단괴 용융환원 제련공정의 물질 및 열수지 모델링 (A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules)

  • 조문경;박경호;민동준
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

저궤도 인공위성 설계를 위한 에너지 균형 분석 프로그램 개발 (Development of Energy Balance Analysis Program for LEO Satellite Design)

  • 이상곤;나성웅
    • 한국항공우주학회지
    • /
    • 제35권9호
    • /
    • pp.850-857
    • /
    • 2007
  • 인공위성 전력계의 설계 분석은 위성 전체의 무게, 크기 및 성능을 결정하는 중요 변수로 작용한다. 특히 위성체 에너지 균형 분석의 경우 전력 시스템의 용량, 설계 제한 조건의 결정 및 위성체 운영 성공 여부를 결정할 수 있는 중요한 분석이다. 본 논문에서는 저궤도 위성 개발을 위한 새로운 에너지 균형 분석 프로그램을 소개하고 타 저궤도 위성 설계 자료를 이용한 시험 결과를 일례로 기술하였다. 시험 결과 본 논문에서 제안한 에너지 균형 분석 프로그램은 위성체 전력계의 최적 사이징 뿐 아니라 위성체 운영 기간 동안 궤도상에서의 위성체 에너지 균형 상황 예측에도 활용할 수 있음을 보였다.

철근콘크리트 슬래브의 진동제어 (Vibration Control of Reinforced Concrete Slabs)

  • 변근주;노병철;유동우;이호범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.201-206
    • /
    • 1993
  • As the vibration loads are variable and the design criteria are more strict, in this study, the dynamic characteristics of the slab is analyzed and the and the vibration is controlled for the special peculiarity of structures. First, the procedure of dynamic analysis is developed by the finite element method and then examined by using the slab model tests. Second, in order to improve the dynamic characteristics, the effects of the number of supports, material properties, position of exciting force, added mass and dynamic balance on the dynamic behavior of reinforced concrete slabs are analysed. It is concluded that the vibration can be controlled by the change in the natural frequency of system and the use of the high-strength concrete or polymer impregnated concrete (PIC), and the dynamic characteristics can be considerably affected by the arrangement of equipments, added mass, and dynamic balance, etc.

  • PDF

Modeling and Parameter Identification of Coal Mill

  • Shin, Hwi-Beom;Li, Xin-Lan;Jeong, In-Young;Park, Jong-Man;Lee, Soon-Young
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.700-707
    • /
    • 2009
  • The coal mill used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow and the outlet temperature are modeled by reinvestigating the mass balance and heat balance models physically. The archived data from a plant database are utilized to identify the model parameters. It can be seen that the simulated model outputs are well matched with the measured ones. It is also expected that the proposed model is useful for the controller design.

수용모델을 이용한 청주시 미세입자($PM_{2.5}$)의 기여도 추정 (Source Identification of Fine Particle($PM_{2.5}$) in Chongju Using a Chemical Mass Balance Model)

  • 강병욱;이학성;김희강
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.477-485
    • /
    • 2000
  • The data set was collected on fifty-eight different days with a 24-h sampling period from October 27, 1995 through August 25, 1996. From the chemical mass balance (CMB) analysis of $PM_{2.5}$ in the Chongju area, the contributions from soil, gasoline, diesel, light and heavy oil combustion were 2.6%, 15.4%, 9.0%, 28.8% and 1.5%, respectively. Residual $NO_{3}^{-}$), residual $SO_{4}^{2-}$ and residual OC, possibly formed in the atmosphere. represented additional 8.0, 10.2, and 1.6% of the $PM_{2.5}$, respectively. Other unidentified sources constituted the remaining 22.9%. From the CMB analysis, the $PM_{2.5}$ source contribution for fall, winter, spring and summer were 92, 76.8, 77.5 and 59.2%, respectively.

  • PDF