• Title/Summary/Keyword: Mass Air Flow

Search Result 991, Processing Time 0.023 seconds

Optimization of Bioreactor Operation by Mass Transfer Coefficient (물질전달계수를 이용한 생물 반응기 운전 최적화)

  • Kim, Hyung-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The effects of various operating parameters(agitation speed, impeller type, antiform agents, impeller spacing etc.) on air-liquid mass transfer was characterized by volumetric mass transfer coefficient($k_La$). Also, the dual-impeller agitated systems are compared with single-impeller agitated systems with a special focus on its applications for bioreactors, $k_La$ was take over a range of 200~450 rpm of agitation speed, and 0.5~2.5 vvm of air flow rates, for four single impeller and impeller combinations consisting of four impeller types, namely rushton, pitched blade, scaba, intermig were tested. The rushton impeller showed the best $k_La$ as compared with other single impellers. The dual impeller system are found to be superior as compared to single impeller in all aspects, The best combination of the dual impeller was a intermig of axial flow type as an upper impeller and a rushton of radial flow type as a lower part. Also, the control of the DO level with the variation of agitation speed was more efficient than that with an increase in air flow rate. The addition of antiform dropped the $k_La$ very large up to 1g/L regardless the type. PPG was less effect on $k_La$ than other antiforms. The impeller spacing and presence of solute are found very effective on $k_La$. When the $NaNO_3$is presented as solute, the $k_La$ increased approximately 50% then control.

  • PDF

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

Experimental Evaluation Method of Mass Transfer Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달계수 실험평가방법에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.482-488
    • /
    • 2015
  • Biological treatment is promising alternative to conventional air pollution control method. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor. The studies of mass transfer in biotrickling filters for air pollution control were of importance in order to control and optimize the purification process. The objectives of this study were to develop the experimental methodologies to evaluate the mass transfer coefficients of gas/liquid(trickling liquid), gas/solid(biomass) and liquid/solid in three phase biotrickling filtration. Also, this study characterized the influence factors on mass transfer such as dynamic holdup volume, gas/liquid flow rate ratio, biomass weight in reactor and recirculation rate of trickling medium for each phase of biotrickling filter.

A Generalized Empirical Correlation on the Mass Flow Rate through Adiabatic Capillary Tubes with Alternative Refrigerants (대체냉매를 적용한 일반화된 모세관의 유량예측 상관식)

  • 최종민;장용희;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.744-750
    • /
    • 2003
  • The performance of adiabatic capillary tubes are measured to provide the database for a generalized correlation. Test conditions and capillary tube geometries are selected to cover a wide range typically observed in air-conditioning and heat pump applications. Based on extensive experimental data for R22, R290, and R407C measured in this study, a generalized correlation for refrigerant flow rate in adiabatic capillary tubes is developed by implementing dimensionless parameters for tube inlet conditions, capillary tube geometry, and refrigerant properties. The correlation yields good agreement with the present data for R22, R290, and R407C with average and standard deviations of 0.9% and 5.0%, respectively. In addition, approximately 97% of the data for Rl2, R134a, R152a, R410A, and R600a obtained in the open literature are correlated within a relative deviation of $\pm$ 15%.

R-134a Flow Boiling on a Plain Tube Bundle (평활관군의 R-134a 흐름비등에 관한 연구)

  • 김종원;김정오;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from $8\;kg/m^2s$ to $26\;kg/m^2s$ and heat flux from $10\;kW/m^2s$ to $40\;kW/m^2s$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which satisfactorily () predicted the data. Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

  • PDF

An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes (원형 세관내 대류비등열전달에 관한 실험적 연구)

  • 추원호;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

Development of a General Analytical Model for Desiccant Wheels (로터리 제습기의 일반 해석 모델)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • The absence of a simple and general analytical model has been a problem in the design and analysis of desiccant-assisted air-conditioning systems. In this study, such an analytical model has been developed based on the approximate integral solution of the coupled transient ordinary differential equations for the heat and mass transfer processes in a desiccant wheel. It turned out that the initial conditions should be determined by the solution of four linear algebraic equations including the heat and mass transfer equations for the air flow as well as the energy and mass conservation equations for the desiccant bed. It is also shown that time-averaged exit air temperature and humidity relations could be given in terms of the heat and mass transfer effectiveness.

Two-Phase Flow Analysis in Multi-Channel

  • Ha Man-Yeong;Kim Cheol-Hwan;Jung Yong-Won;Heo Seong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.840-848
    • /
    • 2006
  • We carried out numerical studies to investigate the single- and two-phase flow characteristics in the single- and multi-channels. We used the finite volume method to solve the mass and momentum conservation equations. The volume of fluid model is used to predict the two-phase flow in the channel. We obtained the distribution of velocity fields, pressure drop and air volume fraction for different water mass flow rates. We also calculated the distribution of mass flow rates in the multi-channels to understand how the flow is distributed in the channels. The calculated results for the single- and two-phase flow are partly compared with the present experimental data both qualitatively and quantitatively, showing relatively good agreement between them. The numerical scheme used in this study predicts well the characteristics of single-and two-phase flow in a multi-channel.

The influence of co-axial air flow on the breakup length of a smooth liquid jet (平滑流의 分裂길이에 미치는 同軸氣流의 영향)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1390-1398
    • /
    • 1988
  • The purpose of this study was experimentally to investigate the disintegration process and disintegration mechanism when co-axial air flows vertically for the longest smooth liquid jet. These were affected by liquid velocity, air velocity, air-to-liquid diameter ratio, nozzle shape, and air-liquid contacting position. That is, this process of disintegration of the liquid jet was similar to that occurred when liquid pressure was increased. At Reynolds number of 10, 000 and below, the changes in the breakup length represent different tendency according to liquid flow rate. The influence of air flow on the disintegration of liquid jet was different according to air-to-liquid diameter ratio, air orifice diameter, nozzle shape and contacting position of liquid and air. In particular, when the tip of liquid nozzle was inside the air orifice, the effect of air flow was the larger than outside the air orifice. The effect of liquid mass flow rate on the change rate of the breakup length was also different.

Computational Flow Analysis with Geometric and Operating Conditions of Air Lift Pump (기포펌프의 형상 및 작동 조건에 따른 전산유동해석)

  • Kang, Geonhan;Kim, Sungcho;Choi, Jongwook
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.18-27
    • /
    • 2020
  • Air lift pump operated by buoyancy is mainly used for the continuous circulation and the purification of fluids. In this study, the computational flow analysis has been performed with the geometric and operating conditions of the air lift pump. The numerical data from the analysis have been verified by comparing with the previous experimental data. The following results are obtained which advance the efficiency of the air lift pump. As the submergence length of pipe increases and the pipe length over the water surface decreases, the non-dimensional mass flow ratio increases in both cases. When the position of the air injection hole is within the pipe, the circulation range of the surrounding fluid becomes widened with the distance between the air injection hole and the pipe inlet relatively becoming narrower. It is more efficient both when the air injection velocity is at 10 m/s and at 15 m/s, and when the diameter of the pipe with holes is doubled near the water surface. It is expected that these results can be provided as fundamental data for operating the air lift pump.