• Title/Summary/Keyword: Masonry infill wall

Search Result 36, Processing Time 0.024 seconds

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

Seismic reliability of precast concrete frame with masonry infill wall

  • Mahdi Adibi;Roozbeh Talebkhah;Hamid Farrokh Ghatte
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The presented paper considers infill masonry walls' influence on the seismic reliability of precast concrete frames. The recent Bojnord earthquake on May 13th, 2017 in Iran (MW 5.4) illustrated that the infill masonry walls play a crucial role in the damage extent and life safety issues of inhabitants in the precast concrete buildings. The incremental dynamic analysis (IDA) approach was used to determine the fragility curves of the represented damaged precast frame. Then, by integrating site hazard and structural fragilities, the seismic reliability of the represented precast frame was evaluated in different damage limit states. Additionally, the static pushover analysis (SPA) approach was used to assess the seismic performance assessment of the precast frame. Bare and infilled frames were modeled as 2D frames employing the OpenSees software platform. The multi-strut macro-model method was employed for infill masonry simulation. Also, a relatively efficient and straightforward nonlinear model was used to simulate the nonlinear behavior of the precast beam-column joint. The outputs show that consideration of the masonry infilled wall effect in all spans of the structural frame leads to a decrease in the possibility of exceedance of specified damage limit states in the structures. In addition, variation of hazard curves for buildings with and without consideration of infilled walls leads to a decrease in the reliability of the building's frames with masonry infilled walls. Furthermore, the lack of infill walls in the first story significantly affects the precast concrete frame's seismic reliability and performance.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Earthquake Resistance of Masonry Infilled Wall (조적 채움벽의 내진성)

  • 이한선;우성우;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.93-98
    • /
    • 2000
  • The objective of this study is to investigate the results of researches which have been conducted throughout the world and in Korea concerning the behavior modes of masonry infill panels and frames. The influence of masonry infill panels on the seismic behavior of RC frames must be considered in the design and evaluation procedure though current code provisions do not generally require explicitly this consideration. However, since the level of the earthquake intensity in Korea is assumed to be moderate, the masonry infill panels may cause the different effect to the structure from those in high seismicity region and this difference should be studied in depth in the future.

  • PDF

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Evaluation of Seismic Behavior for Masonry Infilled RC Moment Resisting Frame with Openings (개구부가 있는 비내력벽을 고려한 저층 RC골조구조물의 지진거동 평가)

  • Ko, Hyun;Park, Yong-Koo;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.483-489
    • /
    • 2008
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middlerise RC buildings In the structural design and assessment of structural behaviors of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models. In this study, seismic behaviors of RC frame with/without masonry infill walls were investigated. To this end, the infill walls were modeled as equivalent diagonal struts. Based on analytical results, it has been shown that masonry infill walls can increase the global strength and stiffness of a structure. Accordingly, inter-story drift ratio will be decreased but seismic forces applied to the structure were increased than design seismic load because natural period of the structure was decreased. It is also seen from the analytical results that the inelastic deformation of RC frame with soft story is concentrated on the first story columns and thus, partial damage may have possibility of collapse of system.

  • PDF

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.