• Title/Summary/Keyword: Mask material

Search Result 263, Processing Time 0.024 seconds

Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation

  • Aggelis, Dimitrios G.;Verbruggen, Svetlana;Tsangouri, Eleni;Tysmans, Tine;Van Hemelrijck, Danny
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • One of the most commonly used techniques to strengthen steel reinforced concrete structures is the application of externally bonded patches in the form of carbon fiber reinforced polymers (CFRP) or recently, textile reinforced cements (TRC). These external patches undertake the tensile stress of bending constraining concrete cracking. Development of full-field inspection methodologies for fracture monitoring are important since the reinforcing layers are not transparent, hindering visual observation of the material condition underneath. In the present study acoustic emission (AE) and digital image correlation (DIC) are applied during four-point bending tests of large beams to follow the damage accumulation. AE helps to determine the onset of fracture as well as the different damage mechanisms through the registered shifts in AE rate, location of active sources and change in waveform parameters. The effect of wave propagation distance, which in large components and in-situ can well mask the original information as emitted by the fracture incidents is also discussed. Simultaneously, crucial information is supplied by DIC concerning the moments of stress release of the patches due to debonding, benchmarking the trends monitored by AE. From the point of view of mechanics, conclusions on the reinforcing contribution of the different repair methodologies are also drawn.

Critical Care Medicine (호흡기내과 의사를 위한 Respiratory Review of 2010)

  • Park, Jie-Hae;Chae, Jin-Nyeong;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • The year of 2009~2010 brought a number of concepts and new ideas were evaluated with promising results. However, some studies that challenged many beliefs. In acute respiratory distress syndrome (ARDS), recent clinical studies took into consideration of pathophysiologic changes of respiratory system compliance. Meta-analysis of positive end-expiratory pressure trials showed survival benefit of high positive end-expiratory pressure in ARDS. Until now, prone positioning did not show survival benefit in patients with ARDS. Extracorporeal membrane oxygenation (ECMO) based management improved survival in patients with severe ARDS. ECMO can be a management option in severe ARDS. Sedation is a standard practice in critically ill patients needing mechanical ventilation. However, Danish group reported less sedation of critically ill patients receiving mechanical ventilation was associated with an increase in days without ventilation. Although this single center study has some limitations, the overall results are promising. Use of maximal sterile barrier precautions (mask, sterile gown, sterile gloves, and large sterile drapes) with chlorhexidine-impregnated dressing reduced central venous catheter related infection. Selective oropharyngeal decontamination (application of topical antibiotics in the oropharynx) reduced the mortality rate of an intensive care unit (ICU) population. Normoglycemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation (NICE-SUGAR) trial reported intensive glucose control increased mortality among adults in the ICU. Some of the results of above papers are promising. However, some ideas may need for more frequent individual assessment and increase the workload of ICU staffs. Before implementation of new practice in ICU, we should take into consideration of individual hospital situation including human and material resources.

A Two-Stage Bit Allocation Algorithm for MPEG-1 Audio Coding (MPEG-1 오디오 부호화를 위한 2단계 비트 할당 알고리듬)

  • 임창헌;천병훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.393-398
    • /
    • 2002
  • The conventional bit allocation scheme for MPEG-1 audio encoding searches the subband with minimum MNR(mask-to-noise ratio) repetitively until its operation is completed, which occupies most of its total computational complexity. In this paper, as a computationally efficient approximation of it, we propose a new bit allocation scheme with a simple subband search and compare it with the existing schemes[1][2] in terms of the computational complexity and sound quality. For the performance comparison, we used the pop music signal contained in SQAM(sound quality assess material) CD from EBU. Simulation results show that the computational complexity of the proposed method is about 42% of that of the existing one in [1] and the sound quality difference in terms of MNR between the two schemes is within the 0.2 ㏈, for the case of using the layer II at the bit rate of 128 kbps.

  • PDF

Characterization and Preparation of the Hydrogel has Excellent Release Effect of the Active Ingredients Using a Radiation Cross-linking Technology (방사선 가교 기술을 이용한 유효성분 방출력이 우수한 하이드로겔 제조 및 특성 분석)

  • Hwang, Seung-Hyun;Ahn, Sung-Jun;Park, Jong-Seok;Jeong, Sung In;Gwon, Hui-Jeong;Lee, Dong Yun;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 2015
  • Typical radiation cross-linked hydrogels has the characteristic that high water content, but low emission efficiency of active ingredients. Therefore, the hydrogel was prepared by the addition to collagen, which is closely related to the formation of skin wrinkles in biocompatibility and highly water-soluble carboxymethyl cellulose sodium salt (CMC) in order to preparation of hydrogels has excellent emission efficiency of active ingredients. Hydrogels were prepared by dissolving CMC and collagen each of 0.5%, 10% concentration in deionized water. Then, prepared hydrogels are performed by gamma-radiation at 1, 3, 5 kGy irradiation dose. The results showed that the gel fraction of after irradiated 3 kGy hydrogel was higher than before irradiated gelation as long as the 55.3%. The swelling rate of irradiated 3 kGy hydrogel was lower than the non-irradiated sample. The compressive strength of 3 kGy irradiated hydrogel was the highest. The visco-elastic did not show any significant differences, even after irradiation. The CMC hydrogel in this study suggested a potential use as a material for the mask pack for improved emission efficiency of the active ingredient and anti-wrinkles.

Correlation among Wearing Masks Because of COVID-19, Makeup Satisfaction and Goal-oriented Attitude (코로나19로 인한 마스크 착용과 메이크업만족도, 목표지향적 태도의 상관관계)

  • Kim, Su-Young;Li, Shun-Hua
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.156-165
    • /
    • 2020
  • 330 Korean adult women were examined the correlation between degree of makeup and makeup satisfaction before/after wearing masks due to COVID-19 and the moderating effect of mandatory/voluntary goal-oriented attitude toward makeup. The study found that lip makeup(p<.001) was significant variable in makeup satisfaction before COVID-19, and eyebrow makeup(0<.002) was significant after COVID-19. Although moderating effect of mandatory goal-oriented attitude, which works between degree of makeup before/after COVID-19 and makeup satisfaction was not significant, but moderating effect of voluntary goal-oriented attitude appeared to be significant before(p<.000) and after(p<.000) COVID-19. And the degree of makeup after COVID-19 was lower than before(p<.000). If one believe that makeup is for one's own satisfaction, degree of makeup can be significant effect on the makeup satisfaction, but actual behavior has shown that degree of makeup has decreased since wearing masks because of COVID-19. I hope this research will be used as marketing material for beauty and cosmetics industry.

Organic-inorganic Hybrid Materials for Spin Coating Hardmask (스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구)

  • Yu, Je Jeong;Hwang, Seok-Ho;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • In this work, the primary material for a single layered hardmask which can afford a spin-on process was prepared by the minture of organic and inorganic sources. The preparation of hybrid polymer was attempted by esterification from silanol terminated siloxane compounds and acetonide-2,2-bis(methoxy)propionic acid. The optical, thermal and morphological properties of the test hardmask film was examined in terms of cross-linking agent and additives. In addition, the etch rate of hardmask film and photo resist layer were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful for hardmask film to form the nano-patterns.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

Dry etch of Ta thin film on MTJ stack in inductively coupled plasma (ICP를 이용한 MTJ stack 위의 Ta 박막의 식각 특성 연구)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.29-29
    • /
    • 2009
  • 현재 고집적 비휘발성 메모리 소자로는 MRAM (Magnetic Random Access Memory)과 PRAM (Phase Magnetic Random Access Memory)이 활발하게 미국과 일본, 한국 등에서 다양한 연구가 진행되어 오고 있다. 이 중에서 MRAM은 DRAM과 비슷한 10 ns의 빠른 읽기/쓰기 속도와 비휘발성 특성을 가지고 있으며, 전하를 저장할 커패시터가 필요 없고, 두 개의 자성충에 약 10 mA 정도의 전류를 가하면 그때 발생하는 약 10 Oe의 자장을 개개의 비트를 write하고, read 시에는 각 비트의 자기저항을 측정함으로써 데이터를 저장하고 읽을 있으므로, 고집적화가 가능성하다 [1]. 현재 우수한 박막 재료가 개발 되었으나, 고집적 MRAM 소자의 양산에는 해결 하여야 하는 문제점이 있다. 특히 다층 박막으로 구성되어 있으므로 식각 공정의 개발이 필수적이다. 지금까지 MRAM 재료의 식각은 주로 Ion milling, ICP, ECR등의 플라즈마 장치를 되었고, 식각 가스로는 할로겐 기체와 금속카보닐 형성을 위한 Co/$NH_3$$Ch_3OH$ 기체가 이용되고 있다. 그러나 할로겐 계열의 기체를 사용할 경우, 식각 부산물들의 높은 끓는점 때문에 식각 부산물이 박막의 표면에서 열적 탈착에 의하여 제거되지 않기 때문에 높은 에너지를 가지는 이온의 도움에 의한 식각이 필요하다. 또한 Cl 계열의 기체를 사용할 경우, 식각 공정 후, 시료가 대기에 노출되면 대기 중의 수분과 식각 부산물이 결합하여 부식 현상이 발생하게 된다. 그러므로 이를 방지하기 위한 추가 공정이 요구된다. 최근에는 부식 현상이 없고, MTJ 상부에 사용되는 Ta 또는 Ti Hard mask와의 높은 선택비를 가지는 $CH_3OH$ 또는 CO/$NH_3$가 사용되고 있다. 하부 박막에 따른 식각 특성에 연구와 다층의 박막의 식각 공정에 발생에 관한 발표는 거의 없다. MRAM을 양산에 적용하기 위하여서는 Main etch 공정에서 빠른 식각 공정이 필요하고, Over etch 공정에서 하부박막에 대한 높은 선택비가 요구된다. 그러므로 본 논문에서는 식각 변수에 따른 플라즈마 측정과 표면 반응을 비교하여 각 공정의 식각 메커니즘을 규명하고, Main Etch 공정에서는 $Cl_2$/Ar 또는 $BCl_3$/Ar 가스를 이용하여 식각 실험을 수행하고, Over etch 공정에는 낮은 Ta 박막 식각 속도를 가지는 $Ch_4/O_2$/Ar 또는 $Ch_3OH$/Ar 가스를 이용하고자 한다. 플라즈마 내의 식각종과 Ta 박막과의 반응을 XPS와 AES를 이용하여 분석하고, 식각 공정 변수에 따른 식각 속도, 식각 선택비와 식각 프로파일 변화를 SEM을 이용하여 관찰한다.

  • PDF