• 제목/요약/키워드: Mask material

검색결과 266건 처리시간 0.033초

스크린 인쇄법의 공정 조건이 전극 패턴 균일성에 미치는 영향 (Effects of Process Conditions on Electrode Patterning by Screen Printing Method)

  • 이나영;김동철;여동훈;이주성;윤상옥;신효순;이준형
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.355-359
    • /
    • 2020
  • In this study, image analysis and surface roughness measurements using an optical microscope are presented as a method to quantitatively evaluate the results of screen printing. Using this method, the squeegee speed, which is the printing process condition, and the printability of the electrode according to the screen mesh were evaluated. Increasing the squeegee speed in the printing process acts as a process element that increases the line width precision of the printed electrode and lowers the surface roughness of the printed surface. Furthermore, the edge roughness, which indicates the clarity of printing, was not significantly affected by the speed of the squeegee during printing. The print thickness increases in proportion to the squeegee speed, but is largely dependent on the screen thickness.

저에너지 집속이온빔리소그라피(FIBL)에 의한 미세패턴 형성 (Micropatterning by Low-Energy Focused ton Beam Lithography(FIBL))

  • 이현용;김민수;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.224-227
    • /
    • 1995
  • The micro-patterning by a Bow energy FIB whish has been conventionally utilized far mask-repairing was investigated. Amorphous Se$\_$75/Gee$\_$25/ resist irradiated by 9[keV]-defocused Ga$\^$+/ ion beam(∼10$\^$15/[ions/$\textrm{cm}^2$]) resulted in increasing the optical absorption, which was also observed also in the film exposed by an optical dose of 4.5${\times}$10$\^$20/[photons/$\textrm{cm}^2$]. The ∼0.3[eV] edge shift for ion-irradiated film was about twice to that obtained for photo-exposed. These large shift could be estimated as due to an increase in disorder from the decrease in the sloop of the Urbach tail. For Ga$\^$+/ FIB irradiation with a relatively low energy, 30[keV] and above the amount of dose of 1.4${\times}$10$\^$16/[ions/$\textrm{cm}^2$], the irradiated region in a-Se$\_$75/Ge$\_$25/ resist was perfectly etched in acid solution for 10[sec], which is relatively a short development time. A contrast was about 2.5. In spite of the relatively low incident energy,∼0.225[$\mu\textrm{m}$] pattern was clearly obtained by the irradiation of a dose 6.5${\times}$10$\^$16/[ions/$\textrm{cm}^2$] and a scan diameter 0.2[$\mu\textrm{m}$], from which excellent results were expected fur incident energies above 50[keV] which was conventionally used in FIBL.

  • PDF

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • 제24권3호
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

유연한 기판상의 유기 트랜지스터의 절연 표면층 상태 변화에 의한 전기적 특성 향상 (Changes of dielectric surface state In organic TFTs on flexible substrate)

  • 김종무;이주원;김영민;박정수;김재경;장진;오명환;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.86-89
    • /
    • 2004
  • Organic thin film transistors (OTFTs) are fabricated on the plastic substrate through 4-level mask process without photolithographic patterning to yield the simple fabrication process. And we herewith report for the effect of dielectric surface modification on the electrical characteristics of OTFTs. The KIST-JM-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide $(ZrO_2)$ gate dielectric layer. In this work, we have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

에폭시 아크릴레이트 올리고머와 전도성 카본블랙을 이용한 감광성 저항 페이스트 조성 연구 (Study on the Compositions of Photosensitive Resistor Paste Using Epoxy Acrylate Oligomers and Conductive Carbonblack)

  • 박성대;강남기;임진규;김동국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.421-421
    • /
    • 2008
  • Generally, the polymer thick-film resistors for embedded organic or hybrid substrate are patterned by screen printing so that the accuracy of resistor pattern is not good and the tolerance of resistance is too high(${\pm}$20~30%). To reform these demerits, a method using Fodel$^{(R)}$ technology, which is the patterning method using a photosensitive resin to be developable by aqueous alkali-solution as a base polymer for thick-film pastes, was recently incorporated for the patterning of thermosetting thick-film resistor paste. Alkali-solution developable photosensitive resin system has a merit that the precise patterns can be obtained by UV exposure and aqueous development, so the essential point is to get the composition similar to PSR(photo solder resist) used for PCB process. In present research, we made the photopatternable resistor pastes using 8 kinds of epoxy acrylates and a conductive carbonblack (CDX-7055 Ultra), evaluated their developing performance, and then measured the resistance after final curing. To become developable by alkali-solution, epoxy acrylate oligomers with carboxyl group were prepared. Test coupons were fabricated by patterning copper foil on FR-4 CCL board, plating Ni/Au on the patterned copper electrode, applying the resistor paste on the board, exposing the applied paste to UV through Cr mask with resistor patterns, developing the exposed paste with aqueous alkali-solution (1wt% $Na_2CO_3$), drying the patterned paste at $80^{\circ}C$ oven, and then curing it at $200^{\circ}C$ during 1 hour. As a result, some test compositions couldn't be developed according to the kind of oligomer and, in the developed compositions, the measured resistance showed different results depending on the paste compositions though they had the same amount of carbonblack.

  • PDF

Dip Coating 법에 의한 Al/$VF_2$-TrFE/Si(100) 구조의 제작 특성 (Fabrications and Properties of Al/$VF_2$/$n^+$-Si(100) Structures by Dip Coating Methode)

  • 김가람;정상현;윤형선;이우석;곽노원;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.20-21
    • /
    • 2008
  • Ferroelectric vinylidene fluoride-trifluoroethylene ($VF_2$-TrFE) copolymer films were directly deposited on degenerated Si ($n^+$, 0.002 $\Omega{\cdot}cm$) using by dip coating method. A 1 ~ 3 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene ($VF_2$:TrFE=70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers using dip coating method for 10 seconds. After Post-Annealing in a vacuum ambient at 100~200 $^{\circ}C$ for 60 min, upper aluminum electrodes were deposited by thermal evaporation through the shadow mask to complete the MFS structure. The ferroelectric $\beta$-phase peak of films, depending on the annealing temperature, started to show up around $125^{\circ}C$, and the intensity of the peak increased with increasing annealing temperature. Above $175^{\circ}C$, the peak started to decrease. The C-V characteristics were measured using a Precision LCR meter (HP 4284A) with frequency of 1MHz and a signal amplitude of 20 mV. The leakage-current versus electric-field characteristics was measured by mean of a pA meter/DC voltage source (HP 4140B).

  • PDF

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

Wet chemistry damage가 Nanopatterned p-ohmic electrode의 전기적/구조적 특성에 미치는 영향 (Influence of Wet Chemistry Damage on the Electrical and Structural Properties in the Wet Chemistry-Assisted Nanopatterned Ohmic Electrode)

  • 이영민;남효덕;장자순;김상묵;백종협
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.150-150
    • /
    • 2008
  • 본 연구에서는 Wet chemistry damage가 Nanopatterned p-ohmic electrode에 미치는 영향을 연구하였다. Nanopattern은 Metal clustering을 이용하여, P-GaN와 Ohmic형성에 유리한 Pd을 50$\AA$ 적층한 후 Rapid Thermal Annealing방법으로 $850^{\circ}C$, $N_2$분위기에서 3min열처리를 하여 Pd Clustering mask 를 제작하였다. Wet etching은 $85^{\circ}C$, $H_3PO_4$조건에서 시간에 따라 Sample을 Dipping하는 방법으로 시행하였다 Ohmic test를 위해서 Circular - Transmission line Model 방법을 이용하였으며, Atomic Force Microscopy과 Parameter Analyzer로 Nanopatterned GaN surface위에 형성된 Ni/ Au Contact에서의 전기적 분석과, 표면구조분석을 시행하였다. AFM결과 Wet처리시간에 따라서 Etching형상 및 Etch rate이 영향을 받는 것이 확인되었고, Ohmic test에서 Wet chemistry처리에 의한 Tunneling parameter와 Schottky Barrier Height가 크게 증/감함을 관찰하였다. 이러한 결과들은 Wet처리에 의해서 발생된 Defect가 GaN의 표면과 하부에서 발생되며, Deep acceptor trap 및 transfer거동과 밀접한 관련이 있음을 확인 할 수 있었다. 보다 자세한 Transport 및 Wet chemical처리영향에 관한 형성 Mechanism은 후에 I-V-T, I-V, C-V, AFM결과 들을 활용하여 발표할 예정이다.

  • PDF

Variable-color Light-emitting Diodes Using GaN Microdonut Arrays

  • Tchoe, Youngbin;Jo, Janghyun;Kim, Miyoung;Heo, Jaehyuk;Yoo, Geonwook;Sone, Cheolsoo;Yi, Gyu-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2014
  • We report the fabrication and electroluminescent characteristics of GaN/InxGa1-xN microdonut-shaped light-emitting diode (LED) microarrays as variable-color emitters. The diameter, width, height, and period of the GaN microdonuts were controlled by their growth parameters and the geometrical factors of the growth mask patterns. For the fabrication of microdonut LEDs, p-GaN/p-AlxGa1-xN/u-GaN/u-InxGa1-xN heteroepitaxial layers were coated on the entire surface of n-GaN microdonuts. The microdonut LED arrays showed strong light emission, which could be seen with the unaided eye under normal room illumination. Additionally, magnified optical images of microdonut LED arrays exhibited microdonut-shaped light emissions having spatially resolved blue and green colors. Their electroluminescence spectra had two dominant peaks at 460 and 560 nm. With increasing applied voltage, the intensity of the blue emission peak increased much faster than that of the green emission peak, indicating that the color of the LEDs is tunable. We also demonstrated that EL spectra of the devices could be controlled by changing the size of microdonut LEDs. What we want to emphasize here with the microdonut LEDs is that they have additional inner sidewall facets which did not exist for other typical three-dimensional structures including nanopyramids and nanorods, and that InxGa1-xN single quantum well formed on the inner sidewall facets had unique thickness and chemical composition, which generated additional EL color. The origin of the electroluminescence peaks was investigated by structural characterizations and chemical analyses.

  • PDF

$BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP (CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry)

  • 서용진;고필주;김남훈;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF