이동 객체 검출은 입력 영상에서 배경과 다른 전경 객체를 찾는 것을 말하는 것으로 지능 영상 감시, HCI, 객체 기반 영상 압축 등의 여러 영상 처리 응용 분야에서 필요한 과정이다. 기존의 이동 객체 검출 알고리즘은 상당한 계산량을 요구하여 다채널 영상 감시 응용, 또는 임베디드 시스템에서의 단일 채널의 실시간 응용에 사용하는 데 애로가 많다. 보다 정확한 이동 객체 검출을 위하여 필요한 과정인 전경 마스크 정정은 보통 열림, 닫힘 등의 모폴로지 연산을 통해 수행된다. 모폴로지 연산은 계산량이 적지 않고 게다가 프로세싱 방법이 달라 이동 객체 검출의 다음 단계인 연결 요소 레이블링 루틴과 동시에 처리되기 어렵다. 본 논문에서는 먼저 모폴로지 연산과는 달리 연결 요소 레이블링 루틴에서 사용되는 주변 픽셀 점검 과정을 활용한 전경 마스크 정정 알고리즘인 "주변 전경 픽셀 전파"을 고안하고, 이를 활용하여 전경 마스크 정정과 연결 요소 레이블링이 동시에 수행될 수 있는 이동 객체 검출 방법을 제안한다. 실험을 통해, 제안된 이동 객체 검출 방법이 기존의 모폴로지 연산을 사용한 방법 보다 정확하게 이동 객체를 검출하였으며, 대상 실험 영상 프레임 및 비디오에 대해서는 최소 4배 이상 신속하게 처리됨을 확인하였다.
International Journal of Advanced Culture Technology
/
제10권1호
/
pp.294-301
/
2022
COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.
영상에서 에지는 영상의 특징을 분석하는 중요한 요소이며 여러 응용 분야에 선택적으로 활용되고 있다. 이러한 에지를 검출하고 활용하기 위한 많은 연구들이 지금까지도 진행되고 있으며, 초기에는 에지를 검출하기 위하여 인접한 화소들의 관계를 이용한 방법들이 제안되었다. 이러한 방법들의 특징은 알고리즘의 처리가 빠르지만 영상에 관계없이 특정 가중치가 모든 화소에 동일하게 적용되는 것이다. 이와 같은 기존의 방법의 단점을 보완하기 위하여, 최근에는 영상에 따라 적응하여 에지를 검출하는 알고리즘의 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 에지를 우수한 특성으로 검출하기 위해 적응 마스크를 이용한 알고리즘을 제안하였다.
수 마이크로 단위로 계측되는 반도체 COG의 검사 정밀도를 높이기 위해서 라인스캔 카메라가 이용된다. 여러 가지 불량 요인 중 이물질 검출은 COG 패턴이 미세하고 복잡하기 때문에 불량 자동 검사 단계에서 가장 어려운 기술이었다. 본 논문에서는 매칭 속도를 높이기 위하여 2단계 영역분할 템플릿 매칭 방법을 제안하였다. 아울러 수 마이크로 단위의 이물짙 검출을 위하여 그라디언트 마스크와 AND 연산을 이용한 새로운 방법을 제안하였다. 제안된 2단계 템플릿 매칭을 사용한 방법은 기존의 상관 계수 이용법 에 비해 0.3-0.4초 매칭 속도를 향상시켰다. 그리고 제안된 마스크 적용 이물질 검출방법은 기존 마스크를 이용하지 않은 방법에 비해 불량 검출률을 $5-8\%$ 향상시켰다.
In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.
현재 에지 검출은 여러 분야에서 사용되고 있으며, 대부분의 영상처리의 전처리 과정 및 영상처리에 있어서 필수불가결한 기술이다. 이에 따라 관련 연구가 끊임없이 진행되어 오고 있다. 이러한 에지는 영상의 물체에 대한 크기, 방향, 위치 등의 중요한 영상 요소를 가지고 있다. 이를 검출하기 위한 여러 방법들이 제안되어 왔으며, 그 중 대표적인 방법은 Sobel, Prewitt, Roberts, Laplacian, LoG(Laplacian of Gaussian) 등이 있다. 그러나 이러한 기존의 방법들은 복합잡음이 첨가된 영상에서 에지 검출 특성이 미흡하다. 따라서 본 연구에서는 국부 마스크의 크기와 위치에 따라 요소에 대한 중앙값 및 평균값을 이용한 에지 검출 방법을 제안하였다.
전 세계적으로 유행하며 수많은 확진자와 사망자를 발생시킨 코로나바이러스-19(COVID-19)는 일상에서 사람 간 전염이 가능하여 국민들을 불안과 공포에 떨게 하고 있다. 감염을 최소화하기 위해서는 건물 출입시 마스크 착용이 필수적이지만 일부 사람들은 여전히 마스크 없이 얼굴을 노출시킨 채 건물에 출입하고 있다. 본 논문에서는 효율적인 출입 통제를 위해 얼굴에 마스크를 착용했는지 여부를 자동으로 판별하는 방법을 제안한다. 제안 방법은 양쪽 눈 영역을 검출하고 눈 위치를 참조하여 마스크 착용 영역(양쪽 눈 아래 얼굴 영역)을 예측한다. 이 때 마스크 착용 영역을 보다 정확히 예측하기 위해 양쪽 눈 위치가 수평이 되도록 얼굴 영역을 회전하여 정렬한다. 정렬된 얼굴 영역에서 추출된 마스크 착용 영역은 이미지 분석에 특화된 딥러닝 기법인 CNN(Convolutional neural network)을 통해 마스크 착용 여부(착용 또는 미착용)를 최종 판별한다. 총 186장의 테스트 이미지에 대해 실험한 결과, 98.4%의 판별 정확도를 보였다.
변화탐지 과제를 사용한 최근의 시각작업기억 연구는 기억된 표상을 감각적 표상과 대조하는 비교처리 과정이 상대적으로 신속하게 수행될 가능성을 보고하였다[1]. 이러한 가설을 검증하기 위해, 본 연구에서는 기억항목에 대한 공고한 표상 형성이 요구되는 시점 또는 기억항목과 검사항목에 대한 비교 처리가 요구되는 시점에 역행패턴차폐 자극을 제시하여 두 처리 과정에서의 차폐 간섭 효과의 발현 유무를 비교하였다. 실험 1에서는 네 개의 기억항목 또는 검사항목의 제시에 뒤이어 64ms 또는 150ms의 차폐출현간격을 두고 차폐자극이 제시되었으며 피험자는 기억과 검사항목 간 차이 유무를 보고하는 변화탐지 과제를 수행하였다. 실험 결과, 기억항목에 뒤이어 차폐가 제시된 경우(기억차폐 시행)에는 차폐출현간격에 관계없이 변화탐지 정확도가 저조했으나 검사항목에 뒤이어 차폐가 제시된 경우(검사차폐시행)에는 차폐출현간격 64ms 조건에 비해 150ms 조건에서 변화탐지 정확도가 상대적으로 높았다. 실험 2에서는 항목의 개수를 변화시키고(1, 2, 3, 4개) 차폐출현간격을 세분화(117ms, 234ms, 350ms, 584ms)시켜 항목 개수의 증가와 차폐출현간격의 감소에 따른 간섭 효과의 증감패턴을 조사하였다. 기억차폐시행에서는 항목의 개수가 늘어나고 차폐출현간격이 짧아 질수록 점차 증가하는 간섭패턴이 관찰되었으나, 검사차폐시행에서는 이러한 패턴이 상대적으로 미미하였다. 이러한 결과는 시각작업기억의 비교처리과정이 공고화 과정에 비해 상대적으로 신속하고 정확하게 수행된다는 기존 연구의 제안을 지지한다.
본 연구에서는 딥러닝 객체탐지 기법의 정확도 향상을 위해 항공사진과 드론 영상을 대상으로 확대율 조건과 계절요인이 탐지정확도에 미치는 영향을 실험을 통해 분석하였다. 딥러닝 객체탐지기법 중 빠른 학습 속도와 높은 정확도를 나타내는 Mask R-CNN을 사용하여 탐지대상인 자동차를 픽셀 단위로 탐지하고자 하였다. '서울시 항공사진서비스'를 통해 화면 확대 레벨을 달리하며 학습 영상을 캡처하고 각각을 학습하여 정확도를 분석하였다. 실험결과에 따르면 확대 레벨이 높아질수록 mAP 평균이 60%, 67%, 75%로 높아졌다. 데이터 세트의 train, test 데이터의 확대율을 엇갈려서 배치한 경우에는 확대율이 매우 낮은 경우를 제외하고 저배율의 데이터를 train 데이터로, 고배율의 데이터를 test 데이터로 배치하였을 때 높은 mAP로 반대의 경우보다 20% 이상 차이를 보였다. 그리고 4개월의 시차로 계절적 차이를 두고 촬영한 드론 영상의 경우, 같은 시기 영상자료 학습결과가 평균 93%로 높은 정확도를 나타내어 계절적 차이도 학습에 영향을 주는 것을 확인되었다.
에지검출은 영상의 특징 정보를 화소값들의 밝기 변화로 취득하는 기술이며, 여러 영상처리 분야에서 전처리 과정으로 활용되고 있다. 기존의 에지검출 방법에는 소벨(Sobel), 프리윗(Prewitt), 로버츠(Roberts) 방법 등이 있으며, 이러한 방법들은 영상의 전체 영역에서 동일한 가중치를 적용하여 처리하므로 에지검출 결과가 다소 미흡하다. 따라서 본 논문은 변형된 방향성 마스크를 적용하여 화소들의 방향 및 크기를 고려한 에지검출 알고리즘을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.