• Title/Summary/Keyword: Mask detection

Search Result 338, Processing Time 0.024 seconds

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;방만식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1365-1373
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 pixel. This histogram is (x, y) value of pixel. For example, first line histogram intensity wave from (0, 0) to (0, 197) and last wave from (280, 0) to (2n, 197. So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

Study on Factors for Passenger Risk in Railway Vehicle (철도차량내 승객 위험요소 선정 연구)

  • Park, Won-Hee;Park, Sung-Joon;Kim, Hyo-Jin;Kim, HanSaem;Oh, Sechan
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.733-746
    • /
    • 2021
  • Purpose: This study was conducted for the purpose of selecting important events from among various events that may pose a risk to railway passengers. For this purpose, opinions of various railroad vehicle passengers and railway operator workers were investigated and analyzed. Method: The survey was conducted on 1,000 men and women in their 20s and 60s and 429 workers at 11 company across the country. A survey was conducted on the dangerous situations that may occur in subways, general railroads and high-speed rail vehicles targeting passengers. For railway operator workers, the questionnaire is limited to subway vehicles. Result: Among the passenger risk factors(abnormal behavior and dangerous situations) selected based on the frequency and importance of occurrence of passenger risk factors, the main risk factors are selected 'car door jamming', 'sexual harassment', 'intoxicating behavior', 'fighting' /assault', 'wandering around', and 'not wearing a mask'. Conclusion: The major risk factors affecting passengers were selected by surveying passengers and railway operators. we plan to develop a CCTV detection system with AI technology that can quickly and continuously detect the major risk factors of railway vehicles selected as a result of this study.

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror (Graded 다층박막거울을 이용한 단색 엑스선 획득)

  • Ryu, Cheolwoo;Choi, Byoungjung;Son, Hyunhwa;Kwon, Youngman;Kim, Byoungwook;Kim, Youngju;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.

Position Uncertainty due to Multi-scattering in the Scintillator Array of Dual Collimation Camera (복합 집속 카메라의 섬광체배열에서 다중산란에 의한 위치 불확실성)

  • Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • Position information of radiation interactions in detection material is essential to reconstruct a radiation source image. With most position sensing techniques, the position information of a single interaction inside the detectors can be precisely obtained. Each interaction position of multi-scattering inside scintillators, however, can not be individually measured and only the average of the scattering positions can be obtained, which causes the uncertainty in the measured interaction position. In this paper, the position uncertainties due to the multi-scattering were calculated by Monte Carlo simulation. The simulation model was a 50 by 50 by 5 mm $LaCl_3$(Ce) scintillator(pixel size is 2 by 2 by 5mm) which was utilized for the dual collimation camera. The dual collimation camera uses the information from both photoelectric effect and Compton scattering, and therefore, position uncertainties for both partial and full energy deposition of radiation interactions are calculated. In the case of partial energy deposition(PED), the standard deviations of positions are less than $1{\sim}2mm$, which means the uncertainty caused by multi-scattering is not significant. Because the effect of the multi-scattering with PED is insignificant, the multi-scattering has little effect on the performance of Compton imaging of dual collimation camera. In the case of full energy deposition(FED), however, the standard deviation of the positions is about twice that of the pixel size of the 1stdetector, except for 122keV incident radiations. Therefore, the standard deviations caused by multi-scatterings should be considered in the design of the coded mask of the dual collimation camera to avoid artifact on the reconstructed image. The position uncertainties of the FEDs are much larger than those of the PEDs for all radiation energies and the ratio of PEDs to FEDs increases when the incident radiation energy increases. The position uncertainties of both PEDs and FEDs are dependent on the incident radiation energy.

  • PDF