• Title/Summary/Keyword: Marshall equipment

Search Result 3, Processing Time 0.016 seconds

Effect of the Compaction Energy and the Marshall Stability due to the Marshall Equipments and Installation Conditions (마샬시험 장치 및 설치조건이 다짐에너지와 안정도에 미치는 영향)

  • Park, Tae-Soon;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.123-131
    • /
    • 2000
  • The compaction equipment and the Marshall stability head are the two important testing equipment for the Marshall test. The compaction equipment is closely related to the air void, VMA and compactability of the mixtures, and the stability head is related to the Marshall stability and the flow, therefore the size and the shape of the equipment is essential for finding the accurate optimum asphalt content for the asphalt mix design. However, the size and the shape of the equipment currently used and the condition of the installation of compaction pedestal in this country are different from each agency and manufacturer. The national inspection of the Marshall equipment is necessary because the difference can affect the test results and also the performance of the asphalt pavement.

  • PDF

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.