• 제목/요약/키워드: Marma

검색결과 3건 처리시간 0.019초

The Marma from Bangladesh: A 'de-Arakanized' Community in Chittagong Hill Tracts

  • Htin, Kyaw Minn
    • 수완나부미
    • /
    • 제7권2호
    • /
    • pp.133-153
    • /
    • 2015
  • The Rakhine (Arakanese) from present-day Rakhine State (Arakan) in Western Myanmar and the Marma from the Chittagong Hill Tracts (CHT) of Southeast Bangladesh originated from the same region, share the same culture and practice the same religion. However, the people from CHT have developed a distinctive identity and are individualized by a different name "Marma". This development raises a number of historical questions. This paper explores how the Arakanese descendants became "Marma" in Bangladesh.

  • PDF

상관관계의 존재하에서 붓스트랩 기법을 이용한 $\bar{x}$ 와 EWMA관리도의 수행도 평가 (Performance Evaluation of $\bar{x}$ and EWMA Control Charts using Bootstrap Technique in the Presence of Correlation)

  • 손한덕;송서일
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.365-370
    • /
    • 2002
  • In this study, according to MARMA(1,0) model which was suggested by Seppala, in case of existing autocorrelation in X control chart and EWMA control chart, the standard method and the non-parametric bootstrap method were compared and analysed using the bootstrap method which use the resampling prediction residual.

  • PDF

독립성분분석을 이용한 다변량 시계열 모의 (Multivariate Time Series Simulation With Component Analysis)

  • 이태삼;호세살라스;주하카바넨;노재경
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF