• 제목/요약/키워드: Markov-Modeling

검색결과 272건 처리시간 0.027초

동시공학 환경에서 자원제약이 있는 프로세스 모델의 성능분석에 관한 연구 (A Study on the Performance Analysis of Process Model with Resource Constraints in Concurrent Engineering Environment)

  • 강동진;이상용;유왕진;정용식
    • 산업경영시스템학회지
    • /
    • 제22권51호
    • /
    • pp.231-240
    • /
    • 1999
  • A major concern in Concurrent Engineering is the control and management of workload in a period of process. As a general rule, leveling the peak of workload in certain period is difficult because concurrent processing is comprised of various processes, including overlapping, paralleling looping and so on. Therefore, the workload management with resource constraints is so beneficial that effective methods to analyze design process are momentous. This study presents the Timed Petri Nets approach of precedence logic networks, and provides an alternative for users to analyze constraint processes to resolve conflicts of resources. Another approach to Continuous Time Markov Chain using Stochastic Petri Nets is also proposed. These approaches are expected to facilitate resolving resource constrained scheduling problems more systematically in Concurrent Engineering environment.

  • PDF

의수 제어를 위한 HMM-MLP 근전도 신호 인식 기법 (An EMG Signals Discrimination Using Hybrid HMM and MLP Classifier for Prosthetic Arm Control Purpose)

  • 권장우;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.379-386
    • /
    • 1996
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) and hidden Markov models (HMM's) hybrid classifier. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or vari- ous time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrasts the multilayer feedforward networks are suitable for static patterns. Ank a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of MLP and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF

ATM 성능분석을 위한 대기행렬 모델링 (A Queueing Modeling for A ATM Performance Analysis)

  • 정석윤
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.7-11
    • /
    • 1998
  • ATM 망을 효율적으로 구축하고 여러 가지 형태의 제어를 통하여 망 자원을 안정적으로 관리하기 위해서는 망의 성능에 대한 다양한 관점에서의 분석이 필수적이며, 그 기본이 되는 것이 ATM 다중화기에 대한 성능 분석이다. ATM 다중화기에 입력되는 트래픽을 분석하는데 있어서 MRP(Markov Renewal Processes) 또는 SMP(Semi-Markov Processes)는 자동 상관계수를 계산하기가 비교적 용이해서 높은 양의 상관관계를 가지는 버스티한 트래픽을 표현하기에 적절한 구조를 가지고 있으며, 입력 트래픽의 머무는 시간이 어떠한 분포이든 표현 가능한 장점이 있다. 본 연구에서는 ATM 트래픽을 분석하는데 있어서 입력되는 on/off 소스를 MRP로 모형화하고, 이를 도착과정으로 하는 이산시간 MR/D/1B 대기시스템으로 구성하여 ATM 다중화기의 셀 손실확률 등의 성능분석을 제시한다. 또한 본 연구에서 제시한 방법에 대한 타당성 검증을 위하여 시뮬레이션과 비교 검토한다.

  • PDF

Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구 (A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.30-39
    • /
    • 2003
  • 본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.

  • PDF

모델링 전 추정기법을 이용한 조종시운전시의 외력 및 조류 변수 추정 (Estimation of External Forces and Current Variables in Sea Trial by Using the Estimation-Before-Modeling Method)

  • 윤현규;이기표
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.30-38
    • /
    • 2001
  • 조류를 고려한 조종운동방정식을 정립한 후 선박의 운동변수 뿐만 아니라 외력 및 조류의 방향과 속도도 상태변수로 설정하여 비선형 상태방정식과 측정방정식을 표현하였다. 여기서 외력은 3차의 Gauss-Markov 프로세스로 표시하고, 조류의 방향과 속도는 일정하다고 가정하였다. 상태 추정을 위하여 확장 Kalman-Bucy 필터와 고정간격 스무더를 이용하였다. 기존의 Hwang은 실선 시운전 계측값을 이용하여 동유체력미계수 및 조류의 영향을 동시에 확장 Kalman 필터를 이용하여 추정하였으므로 매개변수의 개수가 상당히 많아지는 반면 모델링 전 추정기법을 사용하면 각각의 동유체력미계수를 추정하는 대신에 3방향의 외력과 조류 변수만을 추정한다. 측정잡음이 포함된 시뮬레이션 측정값을 적용하여 조류 변수를 추정하는 경우 실제값이 잘 추정되는 것을 확인하였다.

  • PDF

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석 (Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique)

  • 최정현;장수형;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화 (Natural Scene Text Binarization using Tensor Voting and Markov Random Field)

  • 최현수;이귀상
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.18-23
    • /
    • 2015
  • 본 논문에서는 텐서보팅을 이용하여 기존 마르코프 랜덤 필드 메소드 안의 가우시안 혼합 모델 함수의 성능을 향상시킬 수 있는 적합한 클러스터 개수 검출 방법을 제시한다. 제안하는 방법의 핵심 포인트는 텐서보팅의 인풋 데이터 토큰의 연속성인 saliency map을 통한 중심점 개수의 추출이다. 우리는 가장 먼저 주어진 자연 영상에서 전경 및 배경 후보 영역을 분리한다. 다음으로, 분리된 각 후보 영역에 대하여 텐서보팅을 적용하여 적절한 클러스터 개수를 추출한다. 우리는 검출된 클러스터 개수를 이용하여 정확한 가우시안 혼합 모델 모델링을 수행할 수 있다. 그리고 이를 적용한 마르코프 랜덤 필드의 unary term과 pairwise term을 계산하여 자연 영상의 텍스트 이진화 결과를 반환한다. 실험 결과, 제안된 방법이 최적의 클러스터 개수를 반환하고, 향상된 텍스트 이진화 결과를 반환함을 확인하였다.

그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집 (MCMC Algorithm for Dirichlet Distribution over Gridded Simplex)

  • 신봉기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권1호
    • /
    • pp.94-99
    • /
    • 2015
  • 비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.

은닉 마르코프 모델을 이용한 해양사고에 개입된 선원의 행동경로 추정 (Estimating the Behavior Path of Seafarer Involved in Marine Accidents by Hidden Markov Model)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제43권3호
    • /
    • pp.160-165
    • /
    • 2019
  • 선원의 행동은 해양사고에 있어서 주요한 원인이다. 본 연구에서는 은닉 마르코프 모델(Hidden Markov Model)에 기반하여 선원의 행동을 모델링하였다. 그런 후, 모델에서 추정한 행동의 경로분석을 통하여 어떠한 상황과 절차 그리고 오류에 의해서 해양사고가 발생되는지를 해석하였다. 모델 구현을 위하여, 선원의 행동을 해양안전심판원에서 간행된 재결 요약서에서 관측하였고, 관측한 결과는 SRKBB(Skill-, Rule-, and Knowledge-Based Behavior)를 기반으로 한 행동분류 프레임워크를 이용하여 HMM 학습에 적합한 행동 데이터로 변환하였다. 선박유형별 선원의 행동을 모델링한 결과, 선박 유형별로 차별성이 있음을 확인하였고, 선원이 우선적으로 행한 행동경로의 식별이 가능하였다. 연구 결과, 본 연구에서 제안한 모델링 기법은 선원의 행동경로 예측에 적용 가능할 뿐만 아니라 해양사고 예방에 필요한 선원 행동 보정을 위한 우선순위 결정에 기여할 수 있을 것으로 기대된다.

확률적 변동성을 가진 은닉마르코프 모형을 통한 비트코인 가격의 변동성 추정 (Hidden Markov model with stochastic volatility for estimating bitcoin price volatility)

  • 강태현;황범석
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.85-100
    • /
    • 2023
  • Stochastic volatility (SV) 모형은 시변 변동성을 모델링하는 주요한 수단 중 하나이며, 특히 금융시장 변동성의 추정 및 예측, 옵션의 가격 결정 등의 분야에서 활발하게 사용되고 있다. 본 논문은 SV 모형을 활용하여 비트코인 시장의 시변 변동성을 모델링하고자 한다. 시장의 변동성은 국면 전환의 특성을 갖고 있다고 알려져 있으며, 시장의 변동 국면을 나누기 위해 시계열의 패턴을 인식하는 작업에 유용한 hidden Markov model(HMM)을 결합하여 사용하고자 한다. 본 연구는 암호화폐 거래 사이트 업비트의 비트코인 데이터를 활용하여 비트코인의 변동성 모형을 추정하였으며 SV 모형의 성능을 높이기 위하여 시장의 변동 국면을 나누어 분석을 진행하였다. MCMC 기법이 SV 모델의 모수를 추정하는 데 사용되며 MAPE, MSE 등의 평가 기준을 통하여 모델의 성능을 확인하고자 한다.