• Title/Summary/Keyword: Markov-Modeling

Search Result 272, Processing Time 0.029 seconds

A New Image Completion Method Using Hierarchical Priority Belief Propagation Algorithm (계층적 우선순위 BP 알고리즘을 이용한 새로운 영상 완성 기법)

  • Kim, Moo-Sung;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • The purpose of this study is to present a new energy minimization method for image completion with hierarchical approach. The goal of image completion is to fill in missing part in a possibly large region of an image so that a visually plausible outcome is obtained. An exemplar-based Markov Random Field Modeling(MRF) is proposed in this paper. This model can deal with following problems; detection of global features, flexibility on environmental changes, reduction of computational cost, and generic extension to other related domains such as image inpainting. We use the Priority Belief Propagation(Priority-BP) which is a kind of Belief propagation(BP) algorithms for the optimization of MRF. We propose the hierarchical Priority-BP that reduces the number of nodes in MRF and to apply hierarchical propagation of messages for image completion. We show that our approach which uses hierarchical Priority-BP algorithm in image completion works well on a number of examples.

A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command (음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구)

  • Jo, Sang Young;Kim, Min Sung;Yang, Jun Suk;Koo, Young Mok;Jung, Yang Geun;Han, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

A Study on Phoneme Likely Units to Improve the Performance of Context-dependent Acoustic Models in Speech Recognition (음성인식에서 문맥의존 음향모델의 성능향상을 위한 유사음소단위에 관한 연구)

  • 임영춘;오세진;김광동;노덕규;송민규;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.388-402
    • /
    • 2003
  • In this paper, we carried out the word, 4 continuous digits. continuous, and task-independent word recognition experiments to verify the effectiveness of the re-defined phoneme-likely units (PLUs) for the phonetic decision tree based HM-Net (Hidden Markov Network) context-dependent (CD) acoustic modeling in Korean appropriately. In case of the 48 PLUs, the phonemes /ㅂ/, /ㄷ/, /ㄱ/ are separated by initial sound, medial vowel, final consonant, and the consonants /ㄹ/, /ㅈ/, /ㅎ/ are also separated by initial sound, final consonant according to the position of syllable, word, and sentence, respectively. In this paper. therefore, we re-define the 39 PLUs by unifying the one phoneme in the separated initial sound, medial vowel, and final consonant of the 48 PLUs to construct the CD acoustic models effectively. Through the experimental results using the re-defined 39 PLUs, in word recognition experiments with the context-independent (CI) acoustic models, the 48 PLUs has an average of 7.06%, higher recognition accuracy than the 39 PLUs used. But in the speaker-independent word recognition experiments with the CD acoustic models, the 39 PLUs has an average of 0.61% better recognition accuracy than the 48 PLUs used. In the 4 continuous digits recognition experiments with the liaison phenomena. the 39 PLUs has also an average of 6.55% higher recognition accuracy. And then, in continuous speech recognition experiments, the 39 PLUs has an average of 15.08% better recognition accuracy than the 48 PLUs used too. Finally, though the 48, 39 PLUs have the lower recognition accuracy, the 39 PLUs has an average of 1.17% higher recognition characteristic than the 48 PLUs used in the task-independent word recognition experiments according to the unknown contextual factor. Through the above experiments, we verified the effectiveness of the re-defined 39 PLUs compared to the 48PLUs to construct the CD acoustic models in this paper.

Mobility Management Scheme for Vehicles Moving Repeated Path (반복 경로를 운행하는 차량의 이동성 관리 기법)

  • Choi, Gyu-Yeon;Han, Sang-Hyuck;Lee, Jung-Girl;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.104-111
    • /
    • 2012
  • It is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment.

Adaptive Anomaly Movement Detection Approach Based On Access Log Analysis (접근 기록 분석 기반 적응형 이상 이동 탐지 방법론)

  • Kim, Nam-eui;Shin, Dong-cheon
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.45-51
    • /
    • 2018
  • As data utilization and importance becomes important, data-related accidents and damages are gradually increasing. Especially, insider threats are the most harmful threats. And these insider threats are difficult to detect by traditional security systems, so rule-based abnormal behavior detection method has been widely used. However, it has a lack of adapting flexibly to changes in new attacks and new environments. Therefore, in this paper, we propose an adaptive anomaly movement detection framework based on a statistical Markov model to detect insider threats in advance. This is designed to minimize false positive rate and false negative rate by adopting environment factors that directly influence the behavior, and learning data based on statistical Markov model. In the experimentation, the framework shows good performance with a high F2-score of 0.92 and suspicious behavior detection, which seen as a normal behavior usually. It is also extendable to detect various types of suspicious activities by applying multiple modeling algorithms based on statistical learning and environment factors.

  • PDF

Analysis of Seafarers' Behavioral Error on Collision Accidents (충돌사고에 대한 해기사의 행동오류 분석)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.237-242
    • /
    • 2019
  • Behavioral errors of the seafarers are one of the major causes of collisions and are usually corrected through education and training. To correct this behavioral error, the structure in which the behavioral error occurs needs to be identified and analyzed. For this purpose, behavior observation data were obtained through ship maneuvering simulation for collision encounters. The 9-state behavior classification frame proposed by Reason was used for the behavior observation and 50 university students were involved in the experiment. Behavioral analysis used the behavioral model of collision avoidance success and failure, which was developed from the 9-state Left-to-Right Hidden Markov modeling technique. As a result of the experiment, the difference between behaviors of success and failure of collision avoidance was clearly identified, and the linkage between 9-state behaviors, required to prevent collision, was derived.

The Primary Process and Key Concepts of Economic Evaluation in Healthcare

  • Kim, Younhee;Kim, Yunjung;Lee, Hyeon-Jeong;Lee, Seulki;Park, Sun-Young;Oh, Sung-Hee;Jang, Suhyun;Lee, Taejin;Ahn, Jeonghoon;Shin, Sangjin
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.5
    • /
    • pp.415-423
    • /
    • 2022
  • Economic evaluations in the healthcare are used to assess economic efficiency of pharmaceuticals and medical interventions such as diagnoses and medical procedures. This study introduces the main concepts of economic evaluation across its key steps: planning, outcome and cost calculation, modeling, cost-effectiveness results, uncertainty analysis, and decision-making. When planning an economic evaluation, we determine the study population, intervention, comparators, perspectives, time horizon, discount rates, and type of economic evaluation. In healthcare economic evaluations, outcomes include changes in mortality, the survival rate, life years, and quality-adjusted life years, while costs include medical, non-medical, and productivity costs. Model-based economic evaluations, including decision tree and Markov models, are mainly used to calculate the total costs and total effects. In cost-effectiveness or costutility analyses, cost-effectiveness is evaluated using the incremental cost-effectiveness ratio, which is the additional cost per one additional unit of effectiveness gained by an intervention compared with a comparator. All outcomes have uncertainties owing to limited evidence, diverse methodologies, and unexplained variation. Thus, researchers should review these uncertainties and confirm their robustness. We hope to contribute to the establishment and dissemination of economic evaluation methodologies that reflect Korean clinical and research environment and ultimately improve the rationality of healthcare policies.

Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method (베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발)

  • Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Seo, Byunghun;Kim, Dongsu;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.

Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate (건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.13-23
    • /
    • 2022
  • In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.

Cost-Effectiveness Analysis of Home-Based Hospice-Palliative Care for Terminal Cancer Patients

  • Kim, Ye-seul;Han, Euna;Lee, Jae-woo;Kang, Hee-Taik
    • Journal of Hospice and Palliative Care
    • /
    • v.25 no.2
    • /
    • pp.76-84
    • /
    • 2022
  • Purpose: We compared cost-effectiveness parameters between inpatient and home-based hospice-palliative care services for terminal cancer patients in Korea. Methods: A decision-analytic Markov model was used to compare the cost-effectiveness of hospice-palliative care in an inpatient unit (inpatient-start group) and at home (home-start group). The model adopted a healthcare system perspective, with a 9-week horizon and a 1-week cycle length. The transition probabilities were calculated based on the reports from the Korean National Cancer Center in 2017 and Health Insurance Review & Assessment Service in 2020. Quality of life (QOL) was converted to the quality-adjusted life week (QALW). Modeling and cost-effectiveness analysis were performed with TreeAge software. The weekly medical cost was estimated to be 2,481,479 Korean won (KRW) for inpatient hospice-palliative care and 225,688 KRW for home-based hospice-palliative care. One-way sensitivity analysis was used to assess the impact of different scenarios and assumptions on the model results. Results: Compared with the inpatient-start group, the incremental cost of the home-start group was 697,657 KRW, and the incremental effectiveness based on QOL was 0.88 QALW. The incremental cost-effectiveness ratio (ICER) of the home-start group was 796,476 KRW/QALW. Based on one-way sensitivity analyses, the ICER was predicted to increase to 1,626,988 KRW/QALW if the weekly cost of home-based hospice doubled, but it was estimated to decrease to -2,898,361 KRW/QALW if death rates at home doubled. Conclusion: Home-based hospice-palliative care may be more cost-effective than inpatient hospice-palliative care. Home-based hospice appears to be affordable even if the associated medical expenditures double.