• Title/Summary/Keyword: Markov process model

Search Result 368, Processing Time 0.031 seconds

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

Saturated Performance Analysis of IEEE 802.11 DCF with Imperfect Channel Sensing (불완전 채널 감지하의 IEEE 802.11 DCF 포화상태 성능 분석)

  • Shin, Soo-Young;Chae, Seog
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • In this paper, performance of IEEE 802.11 carrier-sense multiple access with collision-avoidance (CSMA/CA) protocols in saturated traffic conditions is presented taking into account the impact of imperfect channel sensing. The imperfect channel sensing includes both missed-detection and false alarm and their impact on the performance of IEEE 802.11 is analyzed and expressed as a closed form. To include the imperfect channel sensing at the physical layer, we modified the state transition probabilities of well-known two state Markov process model. Simulation results closely match the theoretical expressions confirming the effectiveness of the proposed model. Based on both theoretical and simulated results, the probability of detection is concluded as a dominant factor for the performance of IEEE 802.11.

Optimal Buffer Allocation in Multi-Product Repairable Production Lines Based on Multi-State Reliability and Structural Complexity

  • Duan, Jianguo;Xie, Nan;Li, Lianhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1579-1602
    • /
    • 2020
  • In the design of production system, buffer capacity allocation is a major step. Through polymorphism analysis of production capacity and production capability, this paper investigates a buffer allocation optimization problem aiming at the multi-stage production line including unreliable machines, which is concerned with maximizing the system theoretical production rate and minimizing the system state entropy for a certain amount of buffers simultaneously. Stochastic process analysis is employed to establish Markov models for repairable modular machines. Considering the complex structure, an improved vector UGF (Universal Generating Function) technique and composition operators are introduced to construct the system model. Then the measures to assess the system's multi-state reliability and structural complexity are given. Based on system theoretical production rate and system state entropy, mathematical model for buffer capacity optimization is built and optimized by a specific genetic algorithm. The feasibility and effectiveness of the proposed method is verified by an application of an engine head production line.

Deterioration Prediction Model of Water Pipes Using Fuzzy Techniques (퍼지기법을 이용한 상수관로의 노후도예측 모델 연구)

  • Choi, Taeho;Choi, Min-ah;Lee, Hyundong;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • Pipe Deterioration Prediction (PDP) and Pipe Failure Risk Prediction (PFRP) models were developed in an attempt to predict the deterioration and failure risk in water mains using fuzzy technique and the markov process. These two models were used to determine the priority in repair and replacement, by predicting the deterioration degree, deterioration rate, failure possibility and remaining life in a study sample comprising 32 water mains. From an analysis approach based on conservative risk with a medium policy risk, the remaining life for 30 of the 32 water mains was less than 5 years for 2 mains (7%), 5-10 years for 8 (27%), 10-15 years for 7 (23%), 15-20 years for 5 (17%), 20-25 years for 5 (17%), and 25 years or more for 2 (7%).

Adaptive MCMC-Based Particle Filter for Real-Time Multi-Face Tracking on Mobile Platforms

  • Na, In Seop;Le, Ha;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2014
  • In this paper, we describe an adaptive Markov chain Monte Carlo-based particle filter that effectively addresses real-time multi-face tracking on mobile platforms. Because traditional approaches based on a particle filter require an enormous number of particles, the processing time is high. This is a serious issue, especially on low performance devices such as mobile phones. To resolve this problem, we developed a tracker that includes a more sophisticated likelihood model to reduce the number of particles and maintain the identity of the tracked faces. In our proposed tracker, the number of particles is adjusted during the sampling process using an adaptive sampling scheme. The adaptive sampling scheme is designed based on the average acceptance ratio of sampled particles of each face. Moreover, a likelihood model based on color information is combined with corner features to improve the accuracy of the sample measurement. The proposed tracker applied on various videos confirmed a significant decrease in processing time compared to traditional approaches.

A Study on the Recognition System of Faint Situation based on Bimodal Information (바이모달 정보를 이용한 기절상황인식 시스템에 관한 연구)

  • So, In-Mi;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.225-236
    • /
    • 2010
  • This study proposes a method for the recognition of emergency situation according to the bimodal information of camera image sensor and gravity sensor. This method can recognize emergency condition by mutual cooperation and compensation between sensors even when one of the sensors malfunction, the user does not carry gravity sensor, or in the place like bathroom where it is hard to acquire camera images. This paper implemented HMM(Hidden Markov Model) based learning and recognition algorithm to recognize actions such as walking, sitting on floor, sitting at sofa, lying and fainting motions. Recognition rate was enhanced when image feature vectors and gravity feature vectors are combined in learning and recognition process. Also, this method maintains high recognition rate by detecting moving object through adaptive background model even in various illumination changes.

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

For Gene Disease Analysis using Data Mining Implement MKSV System (데이터마이닝을 활용한 유전자 질병 분석을 위한 MKSV시스템 구현)

  • Jeong, Yu-Jeong;Choi, Kwang-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.781-786
    • /
    • 2019
  • We should give a realistic value on the large amounts of relevant data obtained from these studies to achieve effective objectives of the disease study which is dealing with various vital phenomenon today. In this paper, the proposed MKSV algorithm is estimated by optimal probability distribution, and the input pattern is determined. After classifying it into data mining, it is possible to obtain efficient computational quantity and recognition rate. MKSV algorithm is useful for studying the relationship between disease and gene in the present society by simulating the probabilistic flow of gene data and showing fast and effective performance improvement to classify data through the data mining process of big data.

Packet loss pattern modeling of cdma2000 mobile Internet channel for network-adaptive multimedia service (cdma2000 통신망에서 적응적인 멀티미디어 서비스를 위한 패킷 손실 모델링)

  • Suh Won-Bum;Park Sung-Hee;Suh Doug-Young;Shin Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.52-63
    • /
    • 2004
  • Packet loss process of cdma2000 mobile Internet channel deployed in Korea is modeled as a two state Markov process known as Gilbert model. This paper proposes the procedures to derive four parameters of the our modified Gilbert model from packet loss trace taken from two major cdma2000 networks in Korea. These four parameters are derived in various situations, that is, with fixed and moving terminals, in open field and urban areas. They can be used to produce synthetic packet loss patterns for study of the channel. Moreover, if they are calculated on-line during multimedia service, they can be used to make loss protection controls adaptive to network condition.

Reinforcement Learning-based Dynamic Weapon Assignment to Multi-Caliber Long-Range Artillery Attacks (다종 장사정포 공격에 대한 강화학습 기반의 동적 무기할당)

  • Hyeonho Kim;Jung Hun Kim;Joohoe Kong;Ji Hoon Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.42-52
    • /
    • 2022
  • North Korea continues to upgrade and display its long-range rocket launchers to emphasize its military strength. Recently Republic of Korea kicked off the development of anti-artillery interception system similar to Israel's "Iron Dome", designed to protect against North Korea's arsenal of long-range rockets. The system may not work smoothly without the function assigning interceptors to incoming various-caliber artillery rockets. We view the assignment task as a dynamic weapon target assignment (DWTA) problem. DWTA is a multistage decision process in which decision in a stage affects decision processes and its results in the subsequent stages. We represent the DWTA problem as a Markov decision process (MDP). Distance from Seoul to North Korea's multiple rocket launchers positioned near the border, limits the processing time of the model solver within only a few second. It is impossible to compute the exact optimal solution within the allowed time interval due to the curse of dimensionality inherently in MDP model of practical DWTA problem. We apply two reinforcement-based algorithms to get the approximate solution of the MDP model within the time limit. To check the quality of the approximate solution, we adopt Shoot-Shoot-Look(SSL) policy as a baseline. Simulation results showed that both algorithms provide better solution than the solution from the baseline strategy.