• Title/Summary/Keyword: Markov probability

Search Result 451, Processing Time 0.026 seconds

Determination of the Optimal Checkpoint and Distributed Fault Detection Interval for Real-Time Tasks on Triple Modular Redundancy Systems (삼중구조 시스템의 실시간 태스크 최적 체크포인터 및 분산 고장 탐지 구간 선정)

  • Seong Woo Kwak;Jung-Min Yang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.527-534
    • /
    • 2023
  • Triple modular redundancy (TMR) systems can continue their mission by virtue of their structural redundancy even if one processor is attacked by faults. In this paper, we propose a new fault tolerance strategy by introducing checkpoints into the TMR system in which data saving and fault detection processes are separated while they corporate together in the conventional checkpoints. Faults in one processor are tolerated by synchronizing the state of three processors upon detecting faults. Simultaneous faults occurring to more than one processor are tolerated by re-executing the task from the latest checkpoint. We propose the checkpoint placement and fault detection strategy to maximize the probability of successful execution of a task within the given deadline. We develop the Markov chain model for the TMR system having the proposed checkpoint strategy, and derive the optimal fault detection and checkpoint interval.

Application of a Semi-Physical Tropical Cyclone Rainfall Model in South Korea to estimate Tropical Cyclone Rainfall Risk

  • Alcantara, Angelika L.;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.152-152
    • /
    • 2022
  • Only employing historical data limits the estimation of the full distribution of probable Tropical Cyclone (TC) risk due to the insufficiency of samples. Addressing this limitation, this study introduces a semi-physical TC rainfall model that produces spatially and temporally resolved TC rainfall data to improve TC risk assessments. The model combines a statistical-based track model based on the Markov renewal process to produce synthetic TC tracks, with a physics-based model that considers the interaction between TC and the atmospheric environment to estimate TC rainfall. The simulated data from the combined model are then fitted to a probability distribution function to compute the spatially heterogeneous risk brought by landfalling TCs. The methodology is employed in South Korea as a case study to be able to implement a country-scale-based vulnerability inspection from damaging TC impacts. Results show that the proposed model can produce TC tracks that do not only follow the spatial distribution of past TCs but also reveal new paths that could be utilized to consider events outside of what has been historically observed. The model is also found to be suitable for properly estimating the total rainfall induced by landfalling TCs across various points of interest within the study area. The simulated TC rainfall data enable us to reliably estimate extreme rainfall from higher return periods that are often overlooked when only the historical data is employed. In addition, the model can properly describe the distribution of rainfall extremes that show a heterogeneous pattern throughout the study area and that vary per return period. Overall, results show that the proposed approach can be a valuable tool in providing sufficient TC rainfall samples that could be an aid in improving TC risk assessment.

  • PDF

Simulation of the Phase-Type Distribution Based on the Minimal Laplace Transform (최소 표현 라플라스 변환에 기초한 단계형 확률변수의 시뮬레이션에 관한 연구)

  • Sunkyo Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • The phase-type, PH, distribution is defined as the time to absorption into a terminal state in a continuous-time Markov chain. As the PH distribution includes family of exponential distributions, it has been widely used in stochastic models. Since the PH distribution is represented and generated by an initial probability vector and a generator matrix which is called the Markovian representation, we need to find a vector and a matrix that are consistent with given set of moments if we want simulate a PH distribution. In this paper, we propose an approach to simulate a PH distribution based on distribution function which can be obtained directly from moments. For the simulation of PH distribution of order 2, closed-form formula and streamlined procedures are given based on the Jordan decomposition and the minimal Laplace transform which is computationally more efficient than the moment matching methods for the Markovian representation. Our approach can be used more effectively than the Markovian representation in generating higher order PH distribution in queueing network simulation.

A Study on the Volatility of Global Stock Markets using Markov Regime Switching model (마코브국면전환모형을 이용한 글로벌 주식시장의 변동성에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.17-39
    • /
    • 2015
  • This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.

  • PDF

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.

Statistical Approach for Determination of Compliance with Clearance Criteria Based upon Types of Radionuclide Distributions in a Very Low-Level Radioactive Waste (극저준위 방사성폐기물의 방사성핵종 분포유형에 기초하여 자체처분기준 만족여부를 판단하기 위한 통계학적 접근방법)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.123-133
    • /
    • 2010
  • A statistical evaluation methodology was developed to determine the compliance of candidate waste stream with clearance criteria based upon distribution of radionuclide in a waste stream at a certain confidence level. For the cases where any information on the radionuclide distribution is not available, the relation between arithmetic mean of radioactivity concentration and its acceptable maximum standard deviation was demonstrated by applying widely-known Markov Inequality and One-side Chebyshev Inequality. The relations between arithmetic mean and its acceptable maximum standard deviation were newly derived for normally or lognormally distributed radionuclide in a waste stream, using probability density function, cumulative density function, and other statistical relations. The evaluation methodology was tested for a representative case at 95% of confidence level and 100 Bq/g of clearance level of radioactivity concentration, and then the acceptable range of standard deviation at a given arithmetic mean was quantitatively shown and compared, by varying the type of radionuclide distribution. Furthermore, it was statistically demonstrated that the allowable range of clearance can be expanded, even at the same confidence level, if information on the radionuclide distribution is available.

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.

Comparison of Disaster Vulnerability Analysis and Risk Evaluation of Heat Wave Disasters (폭염재해의 재해취약성분석 및 리스크 평가 비교)

  • Yu-Jeong SEOL;Ho-Yong KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.132-144
    • /
    • 2023
  • Recently, the frequency and intensity of heat waves due to the increase in climate change temperature are increasing. Therefore, this study tried to compare the evaluation process and evaluation results of the heat wave disaster evaluation, which is the government's analysis of the heat wave disaster vulnerability and the risk evaluation method recently emphasized by the IPCC. The analysis of climate change disaster vulnerability is evaluated based on manuals and guidelines prepared by the government. Risk evaluation can be evaluated as the product of the possibility of a disaster and its impact, and it is evaluated using the Markov chain Monte Carlo simulation based on Bayesian estimation method, which uses prior information to infer posterior probability. As a result of the analysis, the two evaluation results for Busan Metropolitan City differed slightly in the spatial distribution of areas vulnerable to heat waves. In order to properly evaluate disaster vulnerable areas due to climate change, the process and results of climate change disaster vulnerability analysis and risk assessment must be reviewed, and consider each methodology and countermeasures must be prepared.