• Title/Summary/Keyword: Markov channel

Search Result 142, Processing Time 0.021 seconds

TCP Performance Analysis in Wireless Transmission using Adaptive Modulation and Coding Schemes (적응변조코딩 기법을 사용하는 무선 전송에서의 TCP 성능 분석)

  • 전화숙;최계원;정동근
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.188-195
    • /
    • 2004
  • We have analyzed the performance of TCP in the CDMA mobile communications systems with the adaptive modulation and coding(AMC). The wireless channel using AMC is characterized with not high error rate but highly varying bandwidth. Due to time-varying bandwidth, timeout events of TCP occurs more frequently, which leads to the throughput degradation. The analysis model is composed of the two parts. In the first part, we divide TCP packet stream into ‘packet groups’and derive the probability distribution of the wireless transmission time of each Packet group that reflects the time varying characteristics of AMC. In the second part, we formulate embedded Markov chain by making use of the results of the first part to model TCP timer mechanism and wireless transmission. Since our system model is characterized by the forward link high speed data transmission using AMC, the results reported in this paper can be used as a guideline for the design and operation of HSDPA, 1xEV-DO, and 1xEV-DV.

Contents Scheduling Method for Push-VOD over Terrestrial DTV using Markov-Chain Modeling and Dynamic Programming Approach (마르코프 연쇄 모델링과 동적 계획 기법을 이용한 지상파 DTV 채널에서의 Push-VOD의 콘텐츠 스케줄링 방법)

  • Kim, Yun-Hyoung;Lee, Dong-Jun;Kang, Dae-Kap
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.555-562
    • /
    • 2010
  • After starting digital terrestrial broadcasting, there have been a number oftrials to provide new services like data broadcasting on a spare bandwidth of a DTV channel. Recently, the Push-VOD service, which provides A/V contents on that bandwidth, gets more attention and is being standardized as NRT(Non-Real-Time) by ATSC. However, it is highly probable that the contents transmitted in this way contain many errors due to the DTV receiving environment. Thus, in order to improve the reliability of transmission, the contents should be transmitted repeatedly several times, considering the unidirectional property of DTV terrestrial network. In this paper, we propose a method to calculate the optimal number of repetitions to transmit each contents in a way that minimizes the number of errors occured, when trying to transmit several contents to the receiver in a restricted time, using Markov-chain modeling and dynamic programming approach.

Optimum Parameter and Performance Analysis of Outer-Loop Power Control in IMT-2000 (IMT-2000 외부회로 전력제어의 최적변수 및 성능 분석)

  • Lee, Jae-Seong;Jang, Yeong-Min;Jeon, Gi-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2002
  • This paper gives an optimal step size of E$\sub$b/ /I$\sub$oT/ for outer-loop power control(OLPC) in IMT-2000 system. The performance of outer-loop Power control is affected greatly by the fixed step size according to the channel environments. Conventional methods are inaccurate because they are decided by expert's experiences and the performance is not proved theoretically. In this paper, we show that IMT-2000 system maintains optimal capacity and QoS by the step size of E$\sub$b/ /I$\sub$oT/ obtained from the discrete-time Markov chain model.

The Performance Analysis of DS-UWB Systems with Multiband Rake Receiver (멀티밴드 레이크 수신기를 적용한 DS-UWB 시스템의 성능분석)

  • Choi Yun-Sung;Kim Su-Nam;Kang Dong-Wook;Kim Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.69-75
    • /
    • 2004
  • In the paper, system is combined multiband system with DS-UWB techniques with properties including low peak-to-average power ratio, robustness to multiuser interference and excellent security. Because each sub-band is not satisfied with coherence bandwidth, rake receiver in each sub-band is applied to the Proposed system receiver. Output of rake receiver is combined by using Maximal Ratio combining technology. In this paper we mathematically analyse the BER of the DS-UWB system with singleband and multiband systems in the narrow interference channel condition and multi user interference channel condition, the simulation results show that proposed scheme is getting robuster with increasing of the number of subbands.

Implementation of a Multimodal Controller Combining Speech and Lip Information (음성과 영상정보를 결합한 멀티모달 제어기의 구현)

  • Kim, Cheol;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2001
  • In this paper, we implemented a multimodal system combining speech and lip information, and evaluated its performance. We designed speech recognizer using speech information and lip recognizer using image information. Both recognizers were based on HMM recognition engine. As a combining method we adopted the late integration method in which weighting ratio for speech and lip is 8:2. By the way, Our constructed multi-modal recognition system was ported on DARC system. That is, our system was used to control Comdio of DARC. The interrace between DARC and our system was done with TCP/IP socked. The experimental results of controlling Comdio showed that lip recognition can be used for an auxiliary means of speech recognizer by improving the rate of the recognition. Also, we expect that multi-model system will be successfully applied to o traffic information system and CNS (Car Navigation System).

  • PDF

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Evaluation of the Effects of a Grouping Algorithm on IEEE 802.15.4 Networks with Hidden Nodes

  • Um, Jin-Yeong;Ahn, Jong-Suk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This paper proposes hidden-node aware grouping (HAG) algorithm to enhance the performance of institute of electrical and electronics engineers (IEEE) 802.15.4 networks when they undergo either severe collisions or frequent interferences by hidden nodes. According to the degree of measured collisions and interferences, HAG algorithm dynamically transforms IEEE 802.15.4 protocol between a contention algorithm and a contention-limited one. As a way to reduce the degree of contentions, it organizes nodes into some number of groups and assigns each group an exclusive per-group time slot during which only its member nodes compete to grab the channel. To eliminate harmful disruptions by hidden nodes, especially, it identifies hidden nodes by analyzing the received signal powers that each node reports and then places them into distinct groups. For load balancing, finally it flexibly adapts each per-group time according to the periodic average collision rate of each group. This paper also extends a conventional Markov chain model of IEEE 802.15.4 by including the deferment technique and a traffic source to more accurately evaluate the throughput of HAG algorithm under both saturated and unsaturated environments. This mathematical model and corresponding simulations predict with 6%discrepancy that HAG algorithm can improve the performance of the legacy IEEE 802.15.4 protocol, for example, even by 95% in a network that contains two hidden nodes, resulting in creation of three groups.

S-ARQ: A New Truncated ARQ for IP-Based Wireless Network

  • Choi, Young-Kyu;Oh, Seong-Jun;Choi, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.174-180
    • /
    • 2010
  • Automatic Repeat reQuest (ARQ) is a very effective technique against transmission error at the medium access control (MAC) layer. An erroneous MAC protocol data unit can be typically retransmitted within a given limit. In order to improve the IP-level performance, which directly affects the user-perceived quality-of-service (QoS), we propose a new truncated ARQ strategy, called MAC service data unit-based ARQ (S-ARQ), where the finite number of opportunities for retransmissions are shared by multiple fragments out of an IP datagram. We describe how SARQ can be implemented in a practical system, and then propose another variant of S-ARQ employing a functionality called early detection of failure. Basically, we evaluate the performance of SARQ in two different manners. First, assuming i.i.d. error process, we analyze both the probability of the delivery failure and the average delay of IP datagram. Then, we assess the performance of S-ARQ via simulation over a 2-state Markov channel.

Improving Voice-Service Support in Cognitive Radio Networks

  • Homayounzadeh, Alireza;Mahdavi, Mehdi
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.444-454
    • /
    • 2016
  • Voice service is very demanding in cognitive radio networks (CRNs). The available spectrum in a CRN for CR users varies owing to the presence of licensed users. On the other hand, voice packets are delay sensitive and can tolerate a limited amount of delay. This makes the support of voice traffic in a CRN a complicated task that can be achieved by devising necessary considerations regarding the various network functionalities. In this paper, the support of secondary voice users in a CRN is investigated. First, a novel packet scheduling scheme that can provide the required quality of service (QoS) to voice users is proposed. The proposed scheme utilizes the maximum packet transmission rate for secondary voice users by assigning each secondary user the channel with the best level of quality. Furthermore, an analytical framework developed for a performance analysis of the system, is described in which the effect of erroneous spectrum sensing on the performance of secondary voice users is also taken into account. The QoS parameters of secondary voice users, which were obtained analytically, are also detailed. The analytical results were verified through the simulation, and will provide helpful insight in supporting voice services in a CRN.

Optimal Call Control Strategies in a Cellular Mobile Communication System with a Buffer for New Calls (신규호에 대한 지체가 허용된 셀룰라 이동통신시스템에서 최적 호제어 연구)

  • Paik, Chun-hyun;Chung, Yong-joo;Cha, Dong-wan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.135-151
    • /
    • 1998
  • The demand of large capacity in coming cellular systems makes inevitable the deployment of small cells, rendering more frequent handoff occurrences of calls than in the conventional system. The key issue is then how effectively to reduce the chance of unsuccessful handoffs, since the handoff failure is less desirable than that of a new call attempt. In this study, we consider the control policies which give priority to handoff calls by limiting channel assignment for the originating new calls, and allow queueing the new calls which are rejected at their first attempts. On this system. we propose the problem of finding an optimal call control strategy which optimizes the objective function value, while satisfying the requirements on the handoff/new call blocking probabilities and the new call delay. The objective function takes the most general form to include such well-known performance measures as the weighted average carried traffic and the handoff call blocking probability. The problem is formulated into two different linear programming (LP) models. One is based on the direct employment of steady state equations, and the other uses the theory of semi-Markov decision process. Two LP formulations are competitive each other, having its own strength in the numbers of variables and constraints. Extensive experiments are also conducted to show which call control strategy is optimal under various system environments having different objective functions and traffic patterns.

  • PDF