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Optimal Call Control Strategies in a Cellular Mobile
Communication System with a Buffer for New Calls*

Chun-hyun Paik®* : Yong-joo Chung*** - Dong-wan Cha****

Abstract

The demand of large capacity in coming cellular systems makes inevitable the deployment of small
cells, rendering more frequent handoff occurrences of calls than in the conventional system. The key issue
is then how effectively to reduce the chance of unsuccessful handoffs, since the handoff failure is less
desirable than that of a new call attempt. In this study, we consider the control policies which give
priority to handoff calls by limiting channel assignment for the originating new calls, and allow queueing
the new calls which are rejected at their first attempts. On this system. we propose the problem of
finding an optimal call control strategy which optimizes the objective function value, while satisfying the
requirements on the handoff/new call blocking probabilities and the new call delay. The objective function
takes the most general form to include such well-known performance measures as the weighted average
carried traffic and the handoff call blocking probability. The problem is formulated into two different
linear programming (LP) models. One is based on the direct employment of steady state equations, and
the other uses the theory of semi-Markov decision process. Two LP formulations are competitive each
other, having its own strength in the numbers of variables and constraints. Extensive experiments are also
conducted to show which call control strategy is optimal under various system environments having
different objective functions and traffic patterns.
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1. Introduction

The demand for high capacity in future cel-
lular mobile communication systems requires
the

handoff of calls from one cell to the other

deployment of small cells where the
occurs more frequently than in conventional
cellular systems. Since the handoff failure,
mentioned typically by the forced termination
of a call in progress, is less desirable than the
failure of a new call attempt, several strate-
gies have been investigated to greatly reduce
the chance of unsuccessful handoffs [5,8,14].

Although these strategies may be effectual
ones for the protection of handoff calls, they
often result in the reduction of weighted av-
erage carried traffics, which is caused by the
increase of blocking of new call attempts. To
alleviate this drawback of handoff prioritized
strategies the strategy queueing of calls (hand-
off or new calls) has been suggested {2,9]. In
[3], Guérin suggested a scheme of queueing
new calls, which not only decreases the new
call blocking probability but also lessens the
degradation of the system performance caused
by the control scheme.

Most of the studies of call control strategies
in the cellular system have focused mainly to
the suggestion of a specific strategy and its
performance evaluation [2,3,6,8]. Recent efforts
have considered the problem which optimizes
the call control in the cellular systems [10,13].

But these studies also have some limitations in

that the optimization is restricted to the
associated control parameter under a given call
control strategy, and thereby in that the lack
of comparison between several strategies, With-
in our knowledge, there is no study dealing
the call control problems under a general
framework which incorporates simultaneously
several strategies and the associated parame-
ters.

In this study, we adopt the scheme allo-
wing the queueing of new calls as an
underlying one, and consider a call control for
handoff and new calls which optimally regu-
lates the assignments of channels for both
types of calls by observing the number of
each type of calls in progress. The suggested
formulation of the call control problem is so
general that the well-known priority strategies
such as cutoff and threshold type {13] may
be a feasible solution. Furthermore, the objec-
tive function takes the most general form, and
includes the weighted average carried traffic
and the blocking probability of handoff calls.

Focusing on a single-cell system where the
arrival rates, the blocking probabilities for both
types of calls, and the average waiting time
of new calls in the buffer are given, con-
sidered are two different linear programming
(LP) formulations for the problem of finding
an optimal call control strategy for both types
of calls. One is based on the direct employ-
ment of steady-state equations, and the other
uses the theory of semi-Markov decision proc-

ess (SMDP). Each formulation has its own
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strength in the numbers of variables and con-
straints,

This paper is organized as follows. In
Section 2, the basic traffic model and control
strategy are first introduced, and then the
steady state equations describing the behavior
of the model are established. In Section 3, the
call control problem is formulated as LP by
two different approaches: the direct employ-
ment of steady-state equations and the use of
theory of SMDP. And a remark which gives
the practical meaning of the optimal solutions
is also provided. Extensive experiments show-
ing which call control strategy becomes an
optimal one under each of various objective
functions and traffic patterns are conducted in
Section 4, and concluding remarks are given

in Section 5.

2. Model Description and
Steady-State Equations

Consider a single-cell system with two
types of calls (handoff and new calls) in
which N channels are assigned. Assume that
handoff and new calls are generated according
to a Poisson process with rates A; and A, re-
spectively. The channel holding times of both
types of calls are exponentially distributed
with rates x4, and p,, respectively.

Consider a control policy which gives pri-

ority to handoff calls by limiting channel
assignment for the originating new calls, and
allows queueing the new calls which are
rejected at their first attempts. Handoff calls
have access to all channels with no restriction.

The system state x=(x) x x3) is denoted
by a 3-dimensional vector whose elements

represent the numbers of handoff ( x;) and
new calls in service ( x;), and the number of
new calls in the queue ( x3). We define two

control parameters at system state x. One is
a(x) denoting the probability that a channel
is assigned to a new call attempt. The new
call, if blocked, tries to pin the buffer. Let B
be the capacity of the buffer. If the buffer is
full, the call is lost. The other is A(x)
denoting the probability that a channel is
assigned to the new call waiting in the first
position of the buffer just when an ongoing
service for a new or handoff call is completed.

Note that the state space is therefore given
by

E = {(xl) X2, x3): X1, X2, X3 > 0'

x1+xZSN,x3SB}.

Let #={x(4 7 k):(4 5, HHEE} be
the steady-state probabilities of the process.
Then, we can obtain the state-transition
equations and normalization condition as

follows:
a If(i 7, k)=1(0,0,0),
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(A +2)x(i, 5, k) =n(i+ 1, ] k)p

+x(i, 7+ 1, k), (1)

b.If i+ j<N, k<B,
(Ay+ A+ i +jm)n(q, j, k) =

Ar(i—1,j, k) + Aa(d, j—1, k)
n(i, j—1, k)+A(1—a(4, 4, k—1))
(g, j, k—1)+(i+1) py BCi+1, j—1,
k+1)x(it], j—1, k+1)+jp,
BCi, j, k+1)x (i, j, k+1)+(G+1) g
(1-pi+1, 7, ) a(i+1, j, B+
G+ D (1= 8G, j+1, B) 2(4, j+1, &),
(2)
c. If i+j=N, kB,
(Ag+ im+ip) (i, j, k)=
Aa(i—1,7 8 + 2a(,j—1, k)
(i, j—1, B+ G+ D Bli+1,7—1, k+1)
a(i+1, =1, k+ 1) +ip, BGs, 7, k+1)
73, j, k+1) + Ay n (3, j, k—1),
(3)

d If i+i{(N, k=B,

(M+ Aa(G i, B+ im+ iu)n(i, j, B =

Ayn(i—1, 7, B+ Aa(i, j—1, B = (G, j—1,

B+, (1~a(i, j, k=D x (i, j, kA~ 1)+

G+ (1 -BG+1, 1, D) (i+1, 1, B+

G+HD (1 =83, j+1, D) n (i, j+1, B,
(4)

e.If i+j=N, k=B,

G +iu)n(i, j, B = A, 7(i—1, j, k)
+ (i, j, k=D +Aa(G, j—1, A

x(i, j—1, A, (5)

f. normalization condition

R TG AR =1, (6)

where

x(i, j, k20, for all (i, j, k) € E,

0<ea(i, j, <1, forall (7, j, ) EE,

0< B34, j, B <1,foral (i, 5, H) = E.

(n

It may be note that a(i, 7, &) = B(;,
i, B =0 for (i,j, K& E and for a given
the values of @ ={ a(s, j, B:(4, j, k) € E}
and B={BGi.jiB:(Gj,Ke E} the
distribution of 7 can be determined by the
above equations.

The blocking probabilities BH(a, 8) for
handoff calls and BMae, B) for new calls are
obtained by

BH(a, p) = x‘e‘:“E. n(x),
where E\={x:x% + x, = N}

(8)
and
BMa, B) = XEZEZ(l—a(x)) (%),
where Ey = {x:x3 = B} (9)
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And the Little’s formula [7] gives the aver-
age delay of the new calls as follows:

Wa, f) = JEE 23 1(x) [ Ay xE§Ez(1 — a(x)) n(x),

(10)

where the denominator represents the av-
erage effective arrival rate of new calls to the
buffer, and the numerator the average number

of new calls in the buffer,

3. LP Formulations for Call

Control Problem

3.1 Direct Employment of Steady-State Equa-
tions

With the ftraffic model made in the pre-
vious section, the call control problem (CCP)
is to find out control parameters a(x) and
B(x), x= E optimizing the specified perfor-
mance objective while ensuring the GOS's
constraints of blocking probabilities for both
types of calls and the average delay for new
calls. The CCP is more precisely stated as

follows.

(CCP) Minimize Z(x, a, 8) = r,BH(a, 8
+ r,BMa, )

subject to

(i) steady-state equations (1) to (5)

(i) normalization condition (6)

(iii) inequalities (7)

{iv) handoff call blocking constraint:
BH(a,f)< BH 1

(v) new call blocking constraint:
BN(a, ) < BN r

(vi) new call delay constraint: Wa, 8) < Wr

where BHy, BNy and Wr represent tol-
erable blocking probabilities of handoff calls,

new calls and average delay of new calls,
respectively,

Note that the objective function Z(x, a, B)
takes the most general form with the weight
parameters { »; } whose values depend on the
specific performance objecti_ves to be employ-
ed. So, Z(m, a, ) includes the prominent
objective functions adopted by the other
studies in the literature: the minimization of
blocking probability of handoff calls and the
maximization of the weighted average carried
traffic, which can be expressed by setting
n=1r=0and r,= A;/p; for i=1,2,
respectively.

Moreover, the well-known call control stra-
tegies such as cutoff and threshold types may
be the feasible solutions of the CCP as follows:
in case of cutoff strategy with parameter g
where the new calls either newly generated or
delayed in the buffer are permitted to be
served only when the number of free channels

is greater than or equals to g [5], ie.,

.. _[1 f N—(+D=g
oi, . B) {0 otherwise,
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.. —[1 if N—~(i+ /) 2g,
AG, j, B {0 otherwise.

In case of threshold type strategy with
parameter / where the new calls are per-
mitted to be served only when the number of
new calls in progress is less than or equals to

/{13], ie,

o (1 if j<i,
oi, j, B { 0 otherwise.

a1 i i<,
BG, j, B { 0 otherwise.

The CCP is a nonlinear programming
problem which has a nonlinear objective func-
tion and a number of nonlinear constraint equa-
tions. Moreover, due to the non-explicitness of
the objective function it is very difficult to
devise an efficient solution method by em-
ploying the existing solution methods., There-
fore, we introduce below an approach to
express the CCP as a linear programming
(LP) problem, called problem (P1), without
introducing any additional variables and con-
straints for which the well-known solution
method such as simplex method can be app-
lied efficiently even for large-sized problems{11].

Noting the nonlinearity embedded in the
CCP, being induced by the terms of a-nx
and those of B+ we can then obtain the

following theorem.

Theorem 1. Consider the following variable

substitutions and constraints modifications: (a)
For the equations in from (1) to (5), (9) and
(10),
a(i, j, B n(s, j, B — A, j, k), (11)
BCi, j, B n(3, j, B) — (i, j, k) (12)

(b) For the equations in (7), for (7, j, k) €E,
0<ali, 7, )1 —

0= A4 j, B<x(i,j A, (13)
0<8(j,BH<1—

<604, 7, B <n(i j, k). (14)

(c) otherwise, the same as the original CCP,

Then the resulting formulation (P1) be-
comes an LP problem, and the optimal solu-
tions of the original nonlinear CCP can always
be obtained by those of the pertinent LP
formulation.

Proof. It is straightforward to verify that the
reformulated problem is a LP problem. There-
fore, we prove the theorem just by showing
that the optimal solutions of the original pro-
blem can always be induced by the refor-
mulated LP problem. Note that in the irredu-
cible Markov process like our model, #(z, 7, &)
> 0for all (7, j, k) & E. Hence, the optimal

solution of the original problem " and £°
can be obtained by the following:

a0 =70 5013058,
B, i,k =2380,14 k[, ] k.
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In the following theorem, we suggest an
interesting result for the optimal solutions of
the problem (P1)

Theorem 2. Under the condition that the LP
problem P1 has an optimal solution, there
exists an optimal solution «*, 8" for the pro-
blem Pl such that at most 3 out of 2|E
parameters a*(i, 7, k), B°(i, j, k) take a
fractional value between 0 and 1, and all the
others take a value of 0 or 1.

Proof. Let (z*, 7", 8") be an optimal solu-
tion for Pl. First suppose that x*(7,
j, B> 0 for each (i, j, k) € E. Since the
number of variables is 3|E|, from the
property of linear programming problem, there
exists an optimal solution where at least 3|E|
constraints out of total 5|El+3 ones are
satisfied with equality. It follows from the
above property of linear programming that the
number of cases such that 0<7'(7, j, &)
K<x* (i, 5, ) or 0< 8" (4, ], <, j, A
is at most 3. Therefore, there exists an
optimal solution for P such that at most 3
parameters @'(i, j, &), (i, j, k) take a frac-
tional value between 0 and 1, and all the
others take a value 0 or 1.

Next suppose that E, = {(i, j, ke E|
7'(i, j, /) =0} is not empty. Then replace
the problem Pl with the following smaller
problem. First eliminate all variables cor-
responding to (7, 7, &) = E;, and then elim-

inate all linear constraints corresponding to

(¢, j, k) € E; from the problem Pl. The
reduced problem has the same structure as P1
but with the state space E replaced by
E—E; Note that #'(i, 7, B >0 for al
(1, j, k= E—E,. The preceding argument
therefore applies to the reduced problem.

Consequently, there exists an optimal solution
such that at most 3 out of 2|E—E;|

parameters a(Z, j, k), B(i, 7, k) can take a
value from the range of 0< &°(s, 7, B <1
or 0C B, 7, A1, and all the other

parameters take a wvalue of 0 or 1. If
(i, 7,k is not in E—E, a'(i,j, kb =
B, i, B =0. o

Note that the numbers of variables and
constraints of problem Pl are 3|E| and
BN+ (Y +1)+2|E1+3, excluding non-
negative constraints, respectively, Although the
solution methods for LP problems developed so
far solve effectively the very large-sized
problems like ours, the formulation with the
fewer constraints has often some strength in
the computational time. In the following
section, another LP formulation for the CCP is
introduced, which vyields the one with the
smaller number of constraints and the larger

number of variables.

3.2 Markov Decision Process Approach

The purpose of this section is to reformulate
the CCP as another LP formulation, called
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problem (P2), by employing semi-Markov
decision process (SMDP) approach [4,15].
The SMDP approach has been an useful tech-
nique for the optimal control of several types
of telecommunication systems which have a
dynamic behavior {12].

An SMDP state (x, @) can be built by

embedding an action variable @ = (a;, ay) to
each system state x, x€ E defined in the
previous subsection as follows: at an arrival or
service completion of any type of call, the
system state moves to a state x or stays in
x, and an action is taken with regard to
either of giving a channel or not for both
of the next arriving new calls (a;) and new
calls in the buffer (a;) during the state x.

The actions of giving a channel or not for
new calls are discriminated by the values 0
and 1, respectively.

Then the steady-state behavior of traffic

model introduced in Section 2 is expressed as
an SMDP with the following state space Ep:

Ep= {xp=(x, @): x =(xy, %2, x3)E E,

a = (ay, @) € A},

where

Ax= {(01, az):al=0ifx+ eleEE,

a;=0 if x+ ey — e3 € E}.

To apply the technique of LP formulation
for SMDP, we need P, which is the proba-

bility that the next state is y & E given that
the current state is x= E and the action
a€ A, is taken.

The expected time until a new state is
entered when the current state is x€ E and
action a< A, is chosen, 7(x, a), is given

by:

ox, @) =[xip1 + 220 + 1,4 {E} A,

+1 x+ e;{E} ’lZ] !

where 1,{E} take a value 1 if E contains

e, 0 otherwise. Then we can obtain the

transition probabilities as follows:

Ar(x, a), y=x+e

Aalx, a), y=x+e,

A22(0=a) z(x, a), y=x+ey

Proy= {21 (1—ap) v(x, a), y=x—e

xpar(x, a), y=x—e +e;—e3

x2 2 (1—ay) (x, a), y=x—e

X ppayt(x, @, y=x—ey

Let p={tx, a): x€ E, ac A,} denote
the steady-state probabilities of the process.
Then, the blocking for handoff calls and new
calls, and new call delay can be expressed as

follows:
BH(e) = 2, 2 Mz, a),

BN(a) = xzk, erA (1—a)) plx, @),

x



H23% B3N

AqEo g AN7 8&d € ol5F

ANE A HF 20 d 143

W(a) = EZLX x3 p(x, @)/

x€FE a

b R 2, 1ma) o).

Consequently, the LP formulation associated
with the SMDP is given below with decision

variables p(x, a), x = E, ac€ A, .

( P2) min » X;E anA Hx, a) +
r 2, 2, Hxa  (15)

st > Hx, o a) =1 (16)

xeEas A,

2]

h, oy, @  r.Ea

J’%:_z)l’ ver an

2 2, K% @) < BH; (18)

25, 2, K% a) < BNy (19)
2 2 xNx, a)

xe Eac A,

A2 xeg‘kEz aZAx (1— al) p(x, a) = WT

S

(20)

Hx, a) =0, x€E, acs A, (21)

Once the optimal solution p* of the linear

programming problem (P2) is obtained, the

steady state distribution x° of the system

with the optimal control can be computed by

(x) = 2 px a), foral x€ E

ac€ A,

And the optimal control parameter ", 8"

are obtained by

a'(x) = (1,55& p°(x, @) [ ().

for all x € E,

B(x) = (ahzleAtp‘(x, a) | 7*(x),

for all x= E.

Note that the total number of constraints

other than (21) is |El+4.

4. Numerical Examples

Consider a single cell system with parame-
tes N=30,B=3,1/p,=1/p, =180
seconds, and (A4;, 4;) which were selected so
that A/ + A3/ up = 21.9 Erlang, The
sum of arrival rates for both types of calls
was chosen such that blocking probability of
the system with 30 channels will be 0.02
when neither any call control scheme nor the
buffer for queueing of new calls is imple-
mented. And tolerable blocking probabilities of

handoff, new calls and average new call delay
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given by BHr = 0.01, BNy = 0.02 and
Wr = 10 seconds, respectively. In fact, the

introdoction of the buffer for new calls in-
creases the system capacity to 233 Erlang
without any call control scheme. This param-
eterization is to assimilate the traffic and
performance environment to the reality.

With the system parameters defined above,
the LPs were first run (with CPLEX [1] on
the pentium PC) for the problem of maxi-
mizing weighted average carried traffics, and
[Fig.1] shows the results. [Fig.l-(a)] gives
blocking probabilities of handoff and new calls
with respect to a variety of normalized

handoff load A,/ (A; +43). On the other

hand, [Fig.1-(b)] gives the average number
of calls in the buffer and the effective arrival
rate of new call to the buffer, denoted by L
and a, respectively. Therefore, (L/ax 180
seconds) indicates the value of average wait-
ing time of new calls in the buffer.

The objective maximizing carried {raffics
forces blocking probabilities of calls, regardless
of the types of calls, to be small as possible.
As shown in [Fig.1], this yields the result
that the constraints on blocking of handoff
calls and delay of new calls were satisfied
with equality. It is also worth noting that the
blocking probability of new calls is smaller
than that of handoff calls when the ratio of
handoff and new calls, A,/ (A, + 43), is

small. This phenomenon is induced by imple-

mentation of buffer and adoption of objective

maximizing carried traffics.

Next, the LPs were run for the problem
with objective of minimizing handoff call
blocking probability, whose results are given in
[Fig.2]. Other problem parameters were given
the same as above except for the objective
function. In this case, we can observe some
different pattern of optimal call control solu-
tions as compared with the case with objec-
tive of maximizing carried traffics: in most
data instance, the constraints on new call
blocking were satisfied with equality except

the case of A,/ (A, + A,) = 0.5, as shown

in [Fig.2-(a)]. This is mainly due to the fact
that the blocking probability of handoff calls is
maintained as small as possible by limiting
channel assignments for new calls as long as
the constraints on the blocking probability and
delay of new calls are satisfied.

The exceptional case, A;/(A;+Ay)=
0.5, can be explained by the fact that the
constraints on the delay of new calls cannot
be satisfied any more without the decrease in
blocking probability of new calls. Really, the
test run show that if the blocking probability
of new «calls is fixed to 0.02, the problem
yields the infeasible solution.

In some traffic environment such as high-
way, the fraction of handoff calls is usually
greater than that of new calls. [Fig.3] shows
the results for this environment. The value of

A/ py+ Ag/ ¢y is chosen as 21.1 Erlang

instead of 21.9 Erlang simply to guarantee the
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existence of feasible solutions in the considered
range of A,/ (A, + A3). The other problem

parameters are the same as in [Fig.l]. In case
of the objective maximizing carried traffic, the
constraint on the blocking probability of han-
doff calls satisfied with equality ([Fig.3 (a)]),
whereas in case of the objective minimizing
the blocking probabilfty of handoff calls, the
blocking probabilities of handoff calls strictly
increases and the those of new calls strictly
decreases, as the ratio of handoff calls inc-
reases ([Fig.3 (b)]). This phenomenon can be
explained by the similar arguments mentioned
above for the case of A,/(A, + 13) = 0.5
in [Fig.2-(a)].

[Fig.4]l shows the effect of the constraints
on delay of new calls for both types of
objectives. As expected, the objective maxi-
mizing carried traffics forces the blocking pro-
bability of handoff calls satisfied with equality
([Fig4 (a)]), whereas the objective minimi-
zing blocking probabilities of handoff calls
forces the blocking probability of new calls
satisfled with equality ([Fig4 (b)]). In this
experiment, the value of 1/g;=1/py, is
set to 120 seconds instead of 180 seconds
simply to guarantee the existence of feasible
solutions in the considered range of Wo .

Finally, in order to seé the effect of buffer
size, the LPs were run for the problems with
the same parameters as in [Fig.1] except that
the ratio of handoff load is set at 30%
([Fig.5]). As expected, increasing the buffer

size impels the new call blocking probability to
be small as possible. This is because that
increase of the number of new calls to be
queued will reduce the possibility of rejection
of new calls at the first attempt,

The types of optimal call control strategies
represented by the optimal solutions for the
above several experimental problems with both
types of objective functions are in general
close to cutoff priority rather than the thresh-
old type, which implies that the cutoff priority
scheme gives effectively a priority to handoff

calls while reducing sacrifice of new calls,

5. Concluding Remarks

We have studied the optimal call control of
the cellular system which has two typical
calls, new and handoff calls by incorporating
queueing delay of new calls. A call control
problem(CCP) was developed to find a call
control strategy which optimizes the objective
function value, while satisfying the require-
ments on the handoff and new call blocking
probabilities and the new call delay. And two
types of LP formulations for the CCP have
been suggested along with a remark on
theproperty of the optimal solutions induced
from the LP problem. And extensive
experiments have been conducted to show
which call control strategy is optimal under
various system environments having different

objective functions and traffic patterns.
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[Figure 2] Results under objective minimizing handoff blocking
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