• 제목/요약/키워드: Markov chain monte carlo

검색결과 272건 처리시간 0.021초

Application of Markov Chains and Monte Carlo Simulations for Pavement Construction Engineering

  • Nega, Ainalem;Gedafa, Daba
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1043-1050
    • /
    • 2022
  • Markov chains and Monte Carlo Simulation were applied to account for the probabilistic nature of pavement deterioration over time using data collected in the field. The primary purpose of this study was to evaluate pavement network performance of Western Australia (WA) by applying the existing pavement management tools relevant to WA road construction networks. Two approaches were used to analyze the pavement networks: evaluating current pavement performance data to assess WA State Road networks and predicting the future states using past and current pavement data. The Markov chains process and Monte Carlo Simulation methods were used to predicting future conditions. The results indicated that Markov chains and Monte Carlo Simulation prediction models perform well compared to pavement performance data from the last four decades. The results also revealed the impact of design, traffic demand, and climate and construction standards on urban pavement performance. This study recommends an appropriate and effective pavement engineering management system for proper pavement design and analysis, preliminary planning, future pavement maintenance and rehabilitation, service life, and sustainable pavement construction functionality.

  • PDF

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

Markov Chain Monte Carol estimation in Two Successive Occasion Sampling with Radomized Response Model

  • Lee, Kay-O
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.211-224
    • /
    • 2000
  • The Bayes estimation of the proportion in successive occasions sampling with randomized response model is discussed by means of Acceptance Rejection sampling. Bayesian estimation of transition probabilities in two successive occasions is suggested via Markov Chain Monte Carlo algorithm and its applicability is represented in a numerical example.

  • PDF

A Bayesian Approach to Assessing Population Bioequivalence in a 2 ${\times}$ 2 Crossover Design

  • 오현숙;고승곤
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.67-72
    • /
    • 2002
  • A Bayesian testing procedure is proposed for assessment of bioequivalence in both mean and variance which ensures population bioequivalence under normality assumption. We derive the joint posterior distribution of the means and variances in a standard 2 ${\times}$ 2 crossover experimental design and propose a Bayesian testing procedure for bioequivalence based on a Markov chain Monte Carlo methods. The proposed method is applied to a real data set.

  • PDF

A Bayesian Approach for Accelerated Failure Time Model with Skewed Normal Error

  • Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.268-275
    • /
    • 2003
  • We consider the Bayesian accelerated failure time model. The error distribution is assigned a skewed normal distribution which is including normal distribution. For noninformative priors of regression coefficients, we show the propriety of posterior distribution. A Markov Chain Monte Carlo algorithm(i.e., Gibbs Sampler) is used to obtain a predictive distribution for a future observation and Bayes estimates of regression coefficients.

Generalized Weighted Linear Models Based on Distribution Functions

  • Yeo, In-Kwon
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • In this paper, a new form of generalized linear models is proposed. The proposed models consist of a distribution function of the mean response and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models. Markov chain Monte Carlo methods are used to estimate the parameters within a Bayesian framework.

  • PDF

BAYESIAN INFERENCE FOR MTAR MODEL WITH INCOMPLETE DATA

  • Park, Soo-Jung;Oh, Man-Suk;Shin, Dong-Wan
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.183-189
    • /
    • 2003
  • A momentum threshold autoregressive (MTAR) model, a nonlinear autoregressive model, is analyzed in a Bayesian framework. Parameter estimation in the presence of missing data is done by using Markov chain Monte Carlo methods. We also propose simple Bayesian test procedures for asymmetry and unit roots. The proposed method is applied to a set of Korea unemployment rate data and reveals evidence for asymmetry and a unit root.

  • PDF

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

Bayesian Analysis for a Functional Regression Model with Truncated Errors in Variables

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.77-91
    • /
    • 2002
  • This paper considers a functional regression model with truncated errors in explanatory variables. We show that the ordinary least squares (OLS) estimators produce bias in regression parameter estimates under misspecified models with ignored errors in the explanatory variable measurements, and then propose methods for analyzing the functional model. Fully parametric frequentist approaches for analyzing the model are intractable and thus Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC) sampling based approach. Necessary theories involved in modeling and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed methods.

마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형 (Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter)

  • 최정현;이옥정;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.