• Title/Summary/Keyword: Markov chain monte carlo

Search Result 271, Processing Time 0.027 seconds

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events (극치강우사상을 포함한 강우빈도분석의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.337-351
    • /
    • 2010
  • There is a growing dissatisfaction with use of conventional statistical methods for the prediction of extreme events. Conventional methodology for modeling extreme event consists of adopting an asymptotic model to describe stochastic variation. However asymptotically motivated models remain the centerpiece of our modeling strategy, since without such an asymptotic basis, models have no rational for extrapolation beyond the level of observed data. Also, this asymptotic models ignored or overestimate the uncertainty and finally decrease the reliability of uncertainty. Therefore this article provide the research example of the extreme rainfall event and the methodology to reduce the uncertainty. In this study, the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) and the MLE (Maximum Likelihood Estimation) methods using a quadratic approximation are applied to perform the at-site rainfall frequency analysis. Especially, the GEV distribution and Gumbel distribution which frequently used distribution in the fields of rainfall frequency distribution are used and compared. Also, the results of two distribution are analyzed and compared in the aspect of uncertainty.

MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle (MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템)

  • Choi, Baehoon;An, Jhonghyun;Cho, Minho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.

Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate (건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.13-23
    • /
    • 2022
  • In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.

Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis (극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.389-397
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both Gumbel distribution and trend analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

The extension of a continuous beliefs system and analyzing herd behavior in stock markets (연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.17 no.2
    • /
    • pp.27-55
    • /
    • 2011
  • Although many theoretical studies have tried to explain the volatility in financial markets using models of herd behavior, there have been few empirical studies on dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. Thus, this paper theoretically extends a continuous beliefs system belonging to an agent based economic model by introducing a term representing agents'mutual dependence into each agent's utility function and derives a SV(stochastic volatility)-type econometric model. From this model the time-varying herding parameters are efficiently estimated by a Markov chain Monte Carlo method. Using monthly data of KOSPI and DOW, this paper provides some empirical evidences for stronger herding in the Korean stock market than in the U.S. stock market, and further stronger herding after the global financial crisis than before it. More interesting finding is that time-varying herd behavior has weak autocorrelation and the global financial crisis may increase its volatility significantly.

Markov Chain of Active Tracking in a Radar System and Its Application to Quantitative Analysis on Track Formation Range

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1275-1283
    • /
    • 2015
  • Markov chains for active tracking which assigns additional track illuminations evenly between search illuminations for a radar system are presented in this article. And some quantitative analyses on track formation range are discussed by using them. Compared with track-while-search (TWS) tracking that uses scan-to-scan correlation at search illuminations for tracking of a target, active tracking has shown the maximum improvement in track formation range of about 27.6%. It is also shown that the number and detection probability of additional track beams have impact on the track formation range. For the consideration of radar resource management at the preliminary radar system design stage, the presented analysis method can be used easily without the need of Monte Carlo simulation.

런규칙을 사용한 개량된 경계선 수정계획의 설계와 Markov 연쇄의 적용

  • 박창순
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.413-418
    • /
    • 2004
  • The bounded adjustment is known to be more efficient than repeated adjustment when the cost is incurred for engineering process control. The procedure of the bounded adjustment is to adjust the process when the one-step predicted deviation exceeds the adjustment limit by the amount of the prediction. In this paper, two run rules are proposed and studied in order to improve the efficiency of the traditional bounded adjustment procedure. The efficiency is studied in terms of the standardized cost through Monte Carlo simulation when the procedure is operated with and without the run rules. The adjustment procedure operated with run rules turns out to be more robust for changes in the process and cost parameters. The Markov chain approach for calculating the properties of the run rules is also studied.

  • PDF

Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-strength model

  • Chandra, N.;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • In this article we attempted reliability analysis of a component under the stress-strength pattern with both classical as well as Bayesian techniques. The main focus is made to develop the theory for dealing the reliability problems in various circumstances for bivariate environmental set up in context of Bayesian paradigm. A stress-strength based model describes the life of a component which has strength (Y) and is subjected to stress(X). We develop the Bayes and moment estimators of reliability of a component for each of the three possible conditions, under the assumption that the two stresses (i.e. $X_1$ and $X_2$) on a component are dependent and follow a Bivariate exponential (BVE) of Marshall-Olkin distribution, the strength of a component (Y) following exponential distribution is independent of the stresses. The simulation study is performed with Markov Chain Monte Carlo technique via Gibbs sampler to obtain the estimates of Bayes estimators of reliability, are compared with moment estimators of reliabilities on the basis of absolute biases.

  • PDF