Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.197-197
/
2016
Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.
We present a newly developed algorithm based on a Bayesian method for 2D tilted-ring analysis of disk galaxies which operates on velocity fields. Compared to the conventional ones based on a chi-squared minimisation procedure, this new Bayesian-based algorithm less suffers from local minima of the model parameters even with high multi-modality of their posterior distributions. Moreover, the Bayesian analysis implemented via Markov Chain Monte Carlo (MCMC) sampling only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature is essential for performing kinematic analysis of an unprecedented number of resolved galaxies from the upcoming Square Kilometre Array (SKA) pathfinders' galaxy surveys. A standalone code, the so-called '2D Bayesian Automated Tilted-ring fitter' (2DBAT) that implements the Bayesian fits of 2D tilted-ring models is developed for deriving rotation curves of galaxies that are at least marginally resolved (> 3 beams across the semi-major axis) and moderately inclined (20 < i < 70 degree). The main layout of 2DBAT and its performance test are discussed using sample galaxies from Australia Telescope Compact Array (ATCA) observations as well as artificial data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies.
Cancho, Vicente G.;Zavaleta, Katherine E.C.;Macera, Marcia A.C.;Suzuki, Adriano K.;Louzada, Francisco
Communications for Statistical Applications and Methods
/
v.25
no.5
/
pp.471-488
/
2018
In this paper, we propose extending proportional hazards frailty models to allow a discrete distribution for the frailty variable. Having zero frailty can be interpreted as being immune or cured. Thus, we develop a new survival model induced by discrete frailty with zero-inflated power series distribution, which can account for overdispersion. This proposal also allows for a realistic description of non-risk individuals, since individuals cured due to intrinsic factors (immunes) are modeled by a deterministic fraction of zero-risk while those cured due to an intervention are modeled by a random fraction. We put the proposed model in a Bayesian framework and use a Markov chain Monte Carlo algorithm for the computation of posterior distribution. A simulation study is conducted to assess the proposed model and the computation algorithm. We also discuss model selection based on pseudo-Bayes factors as well as developing case influence diagnostics for the joint posterior distribution through ${\psi}-divergence$ measures. The motivating cutaneous melanoma data is analyzed for illustration purposes.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.123-123
/
2020
The present study is aimed to correcting radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty analysis of water levels contributed at each stage in the process. For this reason, a long short-term memory (LSTM) network is used to reproduce three-hour mean areal precipitation (MAP) forecasts from the quantitative precipitation forecasts (QPFs) of the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). The Gangnam urban catchment located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 24 heavy rainfall events, 22 grid points from the MAPLE system and the observed MAP values estimated from five ground rain gauges of KMA Automatic Weather System. The corrected MAP forecasts were input into the developed coupled 1D/2D model to predict water levels and relevant inundation areas. The results indicate the viability of the proposed framework for generating three-hour MAP forecasts and urban flooding predictions. For the analysis uncertainty contributions of the source related to the process, the Bayesian Markov Chain Monte Carlo (MCMC) using delayed rejection and adaptive metropolis algorithm is applied. For this purpose, the uncertainty contributions of the stages such as QPE input, QPF MAP source LSTM-corrected source, and MAP input and the coupled model is discussed.
College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.
Communications for Statistical Applications and Methods
/
v.23
no.2
/
pp.131-146
/
2016
In research on behavioral studies, significant attention has been paid to the stage-sequential process for longitudinal data. Latent class profile analysis (LCPA) is an useful method to study sequential patterns of the behavioral development by the two-step identification process: identifying a small number of latent classes at each measurement occasion and two or more homogeneous subgroups in which individuals exhibit a similar sequence of latent class membership over time. Maximum likelihood (ML) estimates for LCPA are easily obtained by expectation-maximization (EM) algorithm, and Bayesian inference can be implemented via Markov chain Monte Carlo (MCMC). However, unusual properties in the likelihood of LCPA can cause difficulties in ML and Bayesian inference as well as estimation in small samples. This article describes and addresses erratic problems that involve conventional ML and Bayesian estimates for LCPA with small samples. We argue that these problems can be alleviated with a small amount of prior input. This study evaluates the performance of likelihood and MCMC-based estimates with the proposed prior in drawing inference over repeated sampling. Our simulation shows that estimates from the proposed methods perform better than those from the conventional ML and Bayesian method.
Linear regression models with inequality constraints on the coefficients are frequently used in economic models due to sign or order constraints on the coefficients. In this paper, we propose a Bayesian approach to selecting significant explanatory variables in linear regression models with inequality constraints on the coefficients. Bayesian variable selection requires computation of posterior probability of each candidate model. We propose a method which computes all the necessary posterior model probabilities simultaneously. In specific, we obtain posterior samples form the most general model via Gibbs sampling algorithm (Gelfand and Smith, 1990) and compute the posterior probabilities by using the samples. A real example is given to illustrate the method.
Jung, Jaewon;Bae, Younghye;Kim, Kyunghun;Han, Daegun;Kim, Hung Soo
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.361-361
/
2019
기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.
The Journal of Asian Finance, Economics and Business
/
v.8
no.4
/
pp.665-672
/
2021
The paper examines the impact of shadow economy and corruption, along with public expenditure, trade openness, foreign direct investment (FDI), inflation, and tax revenue on the economic growth of the BRICS countries. Data were collected from the World Bank, Transparency International, and Heritage Foundation over the 1991-2017 period. The Bayesian linear regression method is used to examine whether shadow economy, corruption and other indicators affect the economic growth of countries studied. This paper applies the normal prior suggested by Lemoine (2019) while the posterior distribution is simulated using Monte Carlo Markov Chain (MCMC) technique through the Gibbs sampling algorithm. The results indicate that public expenditure and trade openness can enhance the BRICS countries' economic growth, with the positive impact probability of 75.69% and 67.11%, respectively. Also, FDI, inflation, and tax revenue positively affect this growth, though the probability of positive effect is ambiguous, ranging from 51.13% to 56.36%. Further, the research's major finding is that shadow economy and control of corruption have a positive effect on the economic growth of the BRICS countries. Nevertheless, the posterior probabilities of these two factors are 62.23% and 65.25%, respectively. This result suggests that their positive effect probability is not high.
Didit B Nugroho;Bernadus AA Wicaksono;Lennox Larwuy
Communications for Statistical Applications and Methods
/
v.30
no.2
/
pp.163-178
/
2023
GARCH-X(1, 1) model specifies that conditional variance follows an AR(1) process and includes a past exogenous variable. This study proposes a new class from that model by allowing a more general (non-linear) variance function to follow an AR(1) process. The functions applied to the variance equation include exponential, Tukey's ladder, and Yeo-Johnson transformations. In the framework of normal and student-t distributions for return errors, the empirical analysis focuses on two stock indices data in developed countries (FTSE100 and SP500) over the daily period from January 2000 to December 2020. This study uses 10-minute realized volatility as the exogenous component. The parameters of considered models are estimated using the adaptive random walk metropolis method in the Monte Carlo Markov chain algorithm and implemented in the Matlab program. The 95% highest posterior density intervals show that the three transformations are significant for the GARCHX(1, 1) model. In general, based on the Akaike information criterion, the GARCH-X(1, 1) model that has return errors with student-t distribution and variance transformed by Tukey's ladder function provides the best data fit. In forecasting value-at-risk with the 95% confidence level, the Christoffersen's independence test suggest that non-linear models is the most suitable for modeling return data, especially model with the Tukey's ladder transformation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.