• 제목/요약/키워드: Markov chain Monte Carlo algorithm

검색결과 70건 처리시간 0.024초

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF

베이지안 비선형회귀모형의 선택과 진단 (Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model)

  • 나종화;김정숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.139-151
    • /
    • 2002
  • 본 논문에서는 베이지안 기법을 이용한 비선형회귀모형의 선택법을 제안하였다. 베이즈요인에 기초한 이 방법은 주로 대표본의 경우에 이용되는 고전적 모형선택법에 비해 사전정보를 이용하는 측면과 비내포모형 및 소표본의 경우에 대해서도 효과적으로 사용될 수 있다는 장점을 가진다. 본 논문에서는 정보적 사전분포를 고려하였으며, 베이즈요인의 추정 방법으로 Laplace - Metropolis 추정 법을 제안하였다. 또한 MCMC 과정을 통해 추정된 모수의 수렴진단에 대해서도 고려하였다. 실제자료에 대한 최적의 모형선택 및 진단과정을 구체적으로 제시하였다.

Bayesian Nonstationary Flood Frequency Analysis Using Climate Information

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1441-1444
    • /
    • 2007
  • It is now widely acknowledged that climate variability modifies the frequency spectrum of hydrological extreme events. Traditional hydrological frequency analysis methodologies are not devised to account for nonstationarity that arises due to variation in exogenous factors of the causal structure. We use Hierarchical Bayesian Analysis to consider the exogenous factors that can influence on the frequency of extreme floods. The sea surface temperatures, predicted GCM precipitation, climate indices and snow pack are considered as potential predictors of flood risk. The parameters of the model are estimated using a Markov Chain Monte Carlo (MCMC) algorithm. The predictors are compared in terms of the resulting posterior distributions of the parameters associated with estimated flood frequency distributions.

  • PDF

소프트웨어 신뢰모형에 대한 베이지안 접근 (Bayesian Approach for Software Reliability Models)

  • 최기헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.119-133
    • /
    • 1999
  • 마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.

  • PDF

Bayesian analysis for the bivariate Poisson regression model: Applications to road safety countermeasures

  • Choe, Hyeong-Gu;Lim, Joon-Beom;Won, Yong-Ho;Lee, Soo-Beom;Kim, Seong-W.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.851-858
    • /
    • 2012
  • We consider a bivariate Poisson regression model to analyze discrete count data when two dependent variables are present. We estimate the regression coefficients as sociated with several safety countermeasures. We use Markov chain and Monte Carlo techniques to execute some computations. A simulation and real data analysis are performed to demonstrate model fitting performances of the proposed model.

Herd behavior and volatility in financial markets

  • Park, Beum-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1199-1215
    • /
    • 2011
  • Relaxing an unrealistic assumption of a representative percolation model, this paper demonstrates that herd behavior leads to a high increase in volatility but not trading volume, in contrast with information flows that give rise to increases in both volatility and trading volume. Although detecting herd behavior has posed a great challenge due to its empirical difficulty, this paper proposes a new methodology for detecting trading days with herding. Furthermore, this paper suggests a herd-behavior-stochastic-volatility model, which accounts for herding in financial markets. Strong evidence in favor of the model specification over the standard stochastic volatility model is based on empirical application with high frequency data in the Korean equity market, strongly supporting the intuition that herd behavior causes excess volatility. In addition, this research indicates that strong persistence in volatility, which is a prevalent feature in financial markets, is likely attributed to herd behavior rather than news.

변곡 S-형 소프트웨어 신뢰도성장모형의 베이지안 모수추정 (Bayesian Estimation for Inflection S-shaped Software Reliability Growth Model)

  • 김희수;이종형;박동호
    • 품질경영학회지
    • /
    • 제37권4호
    • /
    • pp.16-22
    • /
    • 2009
  • The inflection S-shaped software reliability growth model (SRGM) proposed by Ohba(1984) is one of the most commonly used models and has been discussed by many authors. The main purpose of this paper is to estimate the parameters of Ohba's SRGM within the Bayesian framework by applying the Markov chain Monte Carlo techniques. While the maximum likelihood estimates for these parameters are well known, the Bayesian method for the inflection S-shaped SRGM have not been discussed in the literature. The proposed methods can be quite flexible depending on the choice of prior distributions for the parameters of interests. We also compare the Bayesian methods with the maximum likelihood method numerically based on the real data.

Bayesian Estimation of Three-parameter Bathtub Shaped Lifetime Distribution Based on Progressive Type-II Censoring with Binomial Removal

  • Chung, Younshik
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2747-2757
    • /
    • 2018
  • We consider the MLE (maximum likelihood estimate) and Bayesian estimates of three-parameter bathtub-shaped lifetime distribution based on the progressive type II censoring with binomial removal. Jung, Chung (2018) proposed the three-parameter bathtub-shaped distribution which is the extension of the two-parameter bathtub-shaped distribution given by Zhang (2004). Jung, Chung (2018) investigated its properties and estimations. The maximum likelihood estimates are computed using Newton-Raphson algorithm. Also, Bayesian estimates are obtained under the balanced loss function using MCMC (Markov chain Monte Carlo) method. In particular, BSEL (balanced squared error loss) function is considered as a special form of balanced loss function given by Zellner (1994). For comparing theirs MLEs with the corresponding Bayes estimates, some simulations are performed. It shows that Bayes estimates is better than MLEs in terms of risks. Finally, concluding remarks are mentioned.

Gibbs알고리즘을 이용한 저축률의 정규분포혼합 추정 (Estimation of the Mixture of Normals of Saving Rate Using Gibbs Algorithm)

  • 윤종인
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.219-224
    • /
    • 2015
  • 본 연구는 우리나라 가계저축률의 정규분포혼합을 추정한다. 2014년 마이크로데이터인 MDSS를 이용하였고 추정방법으로는 깁스알고리즘을 이용하였다. 실증분석결과의 주요내용은 다음과 같다. 첫째, 정규분포혼합을 추정하기 위한 방법으로 깁스알고리즘은 잘 작동하였다. 즉 주요 모수추정치는 모두 정상적 분포를 갖는 것으로 나타났다. 둘째 저축률 자료는 적어도 2개의 성분, 즉 저축률이 평균 0%인 성분과 평균 29.4%인 성분으로 이루어져 있는 것으로 보인다. 즉 우리나라의 가계는 고저축률 집단과 저저축률 집단으로 나누어질 수 있다는 뜻이다. 셋째 정규분포혼합모형 자체는 어떤 가계가 첫째 성분 또는 둘째 성분에 속하는가를 설명할 수 없다. 이에 본 연구는 추가적인 분석을 수행하였지만 소득수준과 가구주 연령은 이에 대한 설명력을 지니지 못하는 것으로 판단된다.