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Abstract

Relaxing an unrealistic assumption of a representative percolation model, this pa-
per demonstrates that herd behavior leads to a high increase in volatility but not
trading volume, in contrast with information flows that give rise to increases in both
volatility and trading volume. Although detecting herd behavior has posed a great
challenge due to its empirical difficulty, this paper proposes a new methodology for de-
tecting trading days with herding. Furthermore, this paper suggests a herd-behavior-
stochastic-volatility model, which accounts for herding in financial markets. Strong ev-
idence in favor of the model specification over the standard stochastic volatility models
is based on empirical application with high frequency data in the Korean equity market,
strongly supporting the intuition that herd behavior causes excess volatility. In addi-
tion, this research indicates that strong persistence in volatility, which is a prevalent
feature in financial markets, is likely attributed to herd behavior rather than news.

Keywords: Herd-behavior-stochastic-volatility model, Markov Chain Monte Carlo al-
gorithm, realized bipower variation, realized volatility, spline regression.

1. Introduction

High volatility is a prevailing property in financial markets. Its source has been a central
question in financial literature. One can reasonably infer that return volatility may be in-
duced by trades related to the arrival of information in markets (as early influential work
on this issue, see Clark, 1973; Copeland, 1976; Jennings et al. 1981; Admati and Pfleiderer,
1988, among others). The information-flow paradigm, however, cannot provide insight into
exactly why we frequently observe high volatility in financial markets even in the absence
of any significant information or news including macroeconomic announcements. Therefore,
many of the extant studies have tried to explain the phenomenon using the models of herd
behavior that may be sufficient to induce high volatility without significant information.
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In particular, recent studies in the field of econophysics have focused on microscopic dy-
namic models to explain herd behavior systemically. The most representative microscopic
dynamic model is percolation model (Stauffer and Sornette, 1999; Cont and Bouchaud, 2000,
etc.), which is based on the hypothesis of information cascades due to imperfect information.
It is supposed that a trader is in an information cascade situation if, after imitating others,
he makes an investment decision independent of his private information. According to the
hypothesis, the information cascade is likely to arise quickly and can be shattered by even a
small amount of public information. Thus, idiosyncratically, herd behavior makes financial
markets unstable and can sometimes result in a panic situation (Egúıluz and Zimmermann,
2000).

Although herd behavior in financial markets has been relatively well documented, there
have been few empirical studies on the influence of herding on volatility associated with
trading volumes. The main reason for this may be the technical difficulty of detecting herd
behavior. Thus, this study suggests a method for detecting herd behavior which makes
financial markets turbulent even in the absence of news and increases volatility of returns
excessively. This study also proposes a herd-behavior-stochastic-volatility model that allows
us to investigate the dynamic relationship between herd behavior, volatility, and trading
volumes. Consequently, this study contributes to the literature on herd behavior as well as
volatility in several ways. First, this study focuses on a new finding that, even in the absence
of news, financial markets can often have excessive volatility that, in general, is negatively
related to trading volumes. Obviously, this finding cannot be explained by information-flow
models, which induce a positive relationship. Although it has been overlooked by researchers
so far, it is quite crucial because it can be easily observed in financial markets. Thus, this
study theoretically clarifies the cause of the divergence from the expected relationship us-
ing the extended percolation model under a more realistic assumption. Second, this study
presents a method for detecting days with herd behavior based on the theoretical result and
the concepts of realized volatility and realized bipower variation, lately developed by Ander-
sen et al. (2003) and Barndorff-Nielsen and Shephard (2004) respectively. Third, using the
detection method we define an indicator function as 1 at a day with herding or 0 otherwise.
Then, we can specify a herd-behavior- stochastic-volatility model whose volatility equation
is switched by the indicator function. Of course, standard maximum likelihood methods
cannot be directly applied to estimate the herd-behavior-stochastic-volatility model because
the unobserved volatility and the parameter vector have to be estimated simultaneously and
further the observation equation is nonlinear in the state variable. Therefore, the Markov
chain Monte Carlo (MCMC) method (Jacquier et al. 1994) is an appropriate estimation
method for the model. This study estimates the herd-behavior-stochastic-volatility model
using high-frequency data on the stock market of South Korea, which is well known to
exhibit severe herding (Chang et al. 2000 and Kim et al. 2004).

The outline of the rest of this paper is as follows. Section 2 explains percolation models
associated with herd behavior and extends it more realistically. For the practical imple-
mentations of the results, Section 3 develops the herd-behavior- stochastic-volatility model
with special emphasis on the ease of detecting herd behavior. Using data on trading volume
and daily realized volatility obtained from high frequency data, Section 4 provides some
empirical evidence on the effect of herding on conditional volatility persistence, analyzes the
relationship between volatility and trading volume, and derives the feasibility of the model
as compared with other stochastic models. The final section concludes with brief suggestions
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for future research.

2. Herd behavior and volatility in the Cont-Bouchaud model

This study expands the Cont-Bouchaud model, which is representative of one such perco-
lation models, to include the examination of the effect of herd behavior on both volatility
and trading volume. It is assumed that there are N agents in a cluster, which is a group of
agents acting together in a stock market, and the ith(1 ≤ i ≤ N) agent trades in an asset
whose price at time t is pt. The state of agent i is represented by ξi = +1,−1, 0 corre-
sponding to buying ξi = +1, selling ξi = −1, or waiting ξi = 0. Agents can be isolated or
connected through links that form a cluster sharing the same information, so the network
of links evolves dynamically. All agents are inactive in the beginning stage (ξi = 0 for all
i), but they are initiated through a chain reaction of other linked agents. That is, at time
t, an agent starts to either buy the asset or sell the asset with probability ((a+, a−)):

P (ξi = +1) = a+, P (ξi = −1) = a− (2.1)

Then, agents in the same cluster imitate this action instantly and make a connection; several
networks can be established. The aggregate state of the cluster is given by

St =

N∑
i=1

ξit (2.2)

where St >0 means excess demand in markets raises price and St <0 means excess supply in
markets decreases price. The size of the cluster has an effect on volatility. After trading, the
cluster is broken up into isolated agents. Once the cluster collapses, all of agents belonging
to this cluster are inactive with probability P (ξi = 0) = 1 − a(a = a+ + a−) and this
repeated process produces herd behavior (refer to Egúıluz and Zimmermann, 2000). In this
percolation model the price evolves over time so that the following equation is considered
as the simple update rule for the price:

pt+1 = pt +
1

λ

N∑
i=1

ξit (2.3)

where λ is the excess demand needed to move the price by one unit and is a parameter
measuring the sensitivity of price to fluctuations in excess demand. When considering the
cluster size, the equation can be rewritten by price change:

4p = pt+1 − pt =
1

λ

k∑
χ=1

ωχξχt =
1

λ

nc∑
χ=1

ζχt (2.4)

where ωχ is the size of cluster χ, ξχt is the individual demand of agents belonging to the
cluster χ, nc is the number of clusters, and ζχt is equal to ωχξχt . Then, following Cont and
Bouchaud (2000), the probability density function of price change is

f(∆p = ν) ∼
|ν|→∞

1

|ν|5/2
eν/ν0 (2.5)
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where ν0 denotes ν at the origin and the kurtosis of the probability density function is given
by (Cont and Bouchaud, 2000)

k(∆p) =
2c+ 1

ℵ(1− c/2)A(c)(1− c)3
(2.6)

where c is a parameter that indicates the level of clustering between agents, A(c) is a nor-
malization constant with a value close to 1, and ℵ is the average number of orders received
during a given period. Thus, as ℵ is smaller, excess kurtosis becomes larger, resulting in
higher fluctuations of returns. It is well known that herd behavior in financial markets gives
rise to high volatility of returns (Lux, 1995; Lux and Marchesi, 1999; Abreu and Brun-
nermeier, 2003; Chari and Kehoe, 2004, among others). According to Cont and Bouchaud
(2000), it is assumed that λ is constant and c is a fixed external parameter so that the
probability (pν = c/N) that any pair of agents i and j are linked together is also constant.
Hence, the volatility depends on parameter a. For example, for a → 1 each agent makes
his investment decision individually. Since isolated agents trade independent of the other
investment decision, large clusters are not built and herd behavior is not produced. In con-
trast, for small a << 1, large proportion of agents do not trade in financial markets and
information is spread out over the agents. Thus, information asymmetry in the markets
prevents agents from making investment decisions independently. This causes an increase in
internal connectivity, which leads to large clusters and herd behavior. Therefore, according
to this view, the herding parameter can be defined as

H = 1/a− 1 (2.7)

While no herding occurs for a = 1 (H = 0), herding is produced for a < 1 (H > 0).
In the Cont-Bouchaud model, probability (a) for buying and selling the asset is assumed

to be fixed at a given value. However, Stauffer and Sornette (1999) shows that price changes
do not change the number of traders, but rather, price changes alter traders’ investment be-
havior. Further, Lux (1995), Lux and Marchesi (1999) argue that although price volatility
in markets does not influence the number of traders, it transforms traders from fundamen-
talists to noise traders who are likely to regard the behavior of other traders as a source of
information. This gives rise to a tendency towards herd formation. That is, high volatility
tends to make it difficult for traders to invest in assets independently and instead react
according to herd behavior.

The new idea proposed in this context is that the probability (a) is not fixed. That is, it
is assumed that the probability evolves with reflection of previous price changes over time:

at = at−1 + γ1|lnpt − lnpt−1| − γ2(lnpt − lnpt−1)2 (2.8)

where 0 < γ1 < 1, 0 < γ2 < 1 are parameters, presenting that while increase in small
price changes leads to increase of at within the information-flow paradigm, increase in large
price changes leads to decrease of at. The latter intuition, reflecting on the studies of Lux
(1995), Lux and Marchesi (1999) and others, is also quite consistent with the research
lines of Michaely and Vila (1996) and Park (2010), which show that trading volume is
negatively associated with high volatility that is considered as risk or uncertainty. Further,
it is supported by the empirical finding from Figure 4.2 that shows the nonlinear relationship
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between volatility and trading volume (i.e. these variables have a positive relationship at low
volatile periods but their relationship changes from positive to negative as trading volume
become larger). The probability with which an agent buys or sells the asset in a given period
is a nonlinear function of past volatility. Hence, herding parameter also evolves with time.

Ht = 1/at − 1 (2.9)

Since at time t the probability that an agent trade independently is at during a given period,
the average number of orders received is given by

ℵt ∼= atN (2.10)

That is, the decrease of at gives rise to the increase in Ht but the decrease of ℵt. As a
result, during the period of high volatility, the probability of independent trading is likely
to be low and the possibility of herding is likely to be high, leading to the small number of
orders. Consequently, the market becomes more volatile. Of course, high volatility resulting
from herd behavior is disappeared by flow of public information or news, which causes the
clusters’ collapse. Then, agents are also isolated again.

3. Accounting for herd behavior in stochastic volatility models

3.1. Realized volatility and realized bipower variation

Consider a simple diffusion process for the log of a price (℘t) with instantaneous volatility,

σ2
t . Conditional on the sample path

{
σ2
t+τ

}1

0
, a natural measure of σ2

t is the integral of

the instantaneous variances over the day t, σ̄2
t =

∫ 1

0
σ2
t+τdτ . Under general conditions, an

unbiased estimator of the integrated variance, known as realized volatility or variation (RV),
is obtained by summing intraday squared returns over many small intervals (1/4) within
the day (Barndorff-Nielsen and Shephard, 2002; Andersen et al. 2003):

RVt+1(4) ≡
1/4∑
j=1

r2
t+j·4,4 (3.1)

where rt,4 is the discretely sampled 4 -period returns, rt,4 ≡ ℘t−℘t−4 and without loss of
generality it is assumed that 1/4 is an integer. Under weak regularity conditions, realized
volatility converges in probability to the increment of the quadratic variation of the diffusion
process over the day as 4 goes to zero (Andersen et al. 2003; Maheu and McCurdy, 2007).
That is,

RVt+1(4)→
∫ t+1

t

σ2(s)ds+
∑

t<s≤t+1

k2(s) (3.2)

where k refers to the size of discrete jumps. Therefore, without jumps realized volatility is
consistent for the integrated volatility.

On the other hand, lately Barndorff-Nielsen and Shephard (2004) define the standardized
realized bipower variation, which provides a consistent estimator of the integrated volatility
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unaffected by jumps, as

BVt+1(4) ≡ µ−2
1

1/4∑
j=2

|rt+j·4,4||rt+(j−1)·4,4| (3.3)

where µ1 ≡
√

2/π = E(|Z|) is the mean of the absolute value of standard normally dis-
tributed random variable Z. Thus, for 4→ 0,

BVt+1(4)→
∫ t+1

t

σ2(s)ds (3.4)

Evidently for 4 → 0 RVt+1(4) − BVt+1(4) is a consistent estimator of the pure jump
contribution to realized volatility. To guarantee positive estimates, Barndorff-Nielsen and
Shephard suggest truncating the actual empirical measurements at zero:

Jt+1(4) ≡ max[RVt+1(4)−BVt+1(4), 0] (3.5)

Based on this idea, a test statistic for jumps can be derived (Andersen et al. 2007). Es-
pecially, with regards to applying the delta rule to the joint bivariate distribution, Huang
and Tauchen (2005) show that the following statistic is closely approximated by a standard
normal distribution.

=t+1(4) ≡ 4−1/2 [RVt+1(4)−BVt+1(4)]/RVt+1(4)

[(µ−4
1 + 2µ−2

1 − 5) max {1, TQt+1(4)BVt+1(4)−2}]1/2
(3.6)

where TQt+1(4) is the standardized realized tripower quarticity:

TQt+1(4) ≡ 4−1µ−3
4/3

1/4∑
j=3

|rt+j·4,4|4/3|rt+(j−1)·4,4|4/3|rt+(j−2)·4,4|4/3 (3.7)

and µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1 = E(|Z|4/3). Thus, we can detect whether the significant
jumps (or news) happen, and identify how big the size of jumps is by the statistic:

Jt+1,℘(4) ≡ I[=t+1(4) > Φ℘] · [RVt+1(4)−BVt+1(4)] (3.8)

where Φ℘ is the critical value of standard normal distribution at a significance level ℘ and
I[·] is the indicator function.

3.2. A method for detecting herd behavior

Generally, since the arrival of new information induces agents to trade assets and change
prices, it raises both volatility and trading volume, thereby leading to a positive relationship
between them (refer to the Mixture of Distribution Hypothesis; Tauchen and Pitts, 1983).
As explained earlier, however, herd behavior caused by noise traders causes a divergence
from this relationship. Even in the absence of news or significant information, it increases
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volatility but decreases trading volume. Due to this anomaly, we can regard time peri-
ods without news at which volatility is higher than conditionally predicted variation given
trading volume as an exhibition of herd behavior.

This approach intuitively allows for the derivation of the following process for detecting
days with herd behavior. First, calculate realized volatility at each day. Second, estimate
the relationship between volatility and trading volume through nonparametric estimation
methods (e.g., spline function; Rice and Rosenblatt, 1983), reflecting their nonlinear re-
lationship. Based on the estimated relationship, realized volatility is predicted at a given
trading volume. Third, detect days with news by the jump test, described in previous sec-
tion. Fourth, identify days during which news is not detected but realized volatility is higher
than predicted one in the second step, as the exhibition of herd behavior.

3.3. Herd-behavior-stochastic-volatility model and an estimation method

Herd-behavior-stochastic-volatility model specification is inspired by the idea that the
state of volatility in the presence of herding should be different from that of volatility without
herding. Thus, to incorporate herd behavior with the stochastic volatility model, which
can consider volatility dynamically, we classify volatility as belonging to one of two states
of markets - ‘with herding’ and ‘without herding’, using appropriately defined indicator
function θt : θt = 1 with herding and θt = 0 otherwise. θt is determined by the method
for detecting herd behavior, which is described in Section 3.2.Thus, the herd-behavior-
stochastic-volatility model has the following representation:

rt = exp(ht/2)εt

ht = (µ1 + φ1(ht−1 − µ1) + β1Vt)θt + (µ2 + φ2(ht−1 − µ2) + β2Vt)(1− θt) + ηt (3.9)

where rt is returns, ht = lnσ2
t , and Vt is trading volumes. εt ∼ iid N(0, 1) and ηt ∼

iid N(0, σ2
η) are independent and the persistent parameter is assumed to satisfy |φ| < 1,

implying that ht is stable.
It is difficult to estimate the herd-behavior-stochastic-volatility model by standard maxi-

mum likelihood methods because the unobserved volatility vector as well as the parameter
vector have to be estimated simultaneously and further the observation equation is non-
linear in the state variable. Indeed, from the herd-behavior-stochastic-volatility model, the
log volatility vector is defined as ht = (h1, · · · , hΓ) and the parameter vector is defined
as Ψ = (µγ,µ1, µ2, φ1, φ2, β1, β2, σ

2
η). Therefore, the likelihood function of the model is the

conditional density of data y :

L(Ψ) = f(y|Ψ) =

∫
f(y, h|Ψ)dh

=

∫
f(y|h,Ψ)f(h|Ψ)dh (3.10)

Denoting Yt−1 = (y1, · · · , yt−1), the density of the data can be represented as a mixture
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over the log volatility vector using law of total probability:

f(y|Ψ) =

T∏
t=1

f(yt|Yt−1,Ψ)

=

T∏
t=1

∫
f(yt|ht, Yt−1,Ψ)f(ht|Yt−1,Ψ)dh (3.11)

where this likelihood function is intractable because the density function f(ht|Yt−1,Ψ) has no
closed form so that yt|Yt−1 cannot be analytically expressed. Due to the reasons, Jacquier
et al. (1994) suggested, the Markov Chain Monte Carlo (MCMC) method that is more
efficient than a quasi-maximum likelihood method, and Shephard and Pitt (1997), Kim et
al. (1998), among others, have developed the MCMC method. According to the results of
simulation for estimating stochastic models, the MCMC method is superior to the quasi-
maximum likelihood method or the GMM method in terms of sampling properties (Jacquier
et al. 1994). Much more detail for the MCMC method is available in the articles by Broto
and Ruiz (2004) and Asai et al. (2006) among others.

4. Empirical evidence

4.1. Data and preliminary statistics

In this section, we present an empirical application to illustrate the plausibility of the
herd-behavior-stochastic-volatility model. The data employed in this application are daily
and high-frequency KOSPI and trading volumes (the number of trading stocks) in the stock
market of South Korea, covering the period between January 2, 2004 and February 29, 2008.
The sample contains a total of 1029 observation days. The span of the sampling period
has high volatility due to ’subprime mortgage crisis,’ which has caused panic in financial
markets, and other several pieces of big news. For representative news, we can take China
shock (April 29, 2004), triggered by Chinese premier Wen Jiabao’s comments on cooling
down the overheating Chinese economy and dealing a sharp blow to the Korean financial
markets, Announcement that North Korean produced a nuclear weapon (February 11, 2005;
the announcement was actually made February 10, a holiday.), and North Korea nuclear
test (October 9, 2006).

The high-frequency data used to measure realized volatility are five-minute observations
of spot markets, which are provided by the Korea Exchange (KRX, http://sm.krx.co.kr),
because five-minute observations are close to optimal sampling intervals derived by previous
studies (Andersen et al. 2001; Bandi and Russell, 2005). The use of a five-minute frequency,
corresponding to 60 intraday observations ( 1/4 = 60), means that the total data used in
this study were obtained from 61,740 observations. It is known that realized volatility suffers
from a bias problem resulting from market microstructure noise, causing autocorrelation in
the intraday returns (Hansen and Lunde, 2006). To remove this autocorrelation and resolve
the problem, filtering techniques such as a moving average (MA) filter have been used by
Andersen et al. (2001), Maheu and McCurdy (2007), and others. Hence, using the method in
section 3.1, realized volatility estimates are calculated by summing squares of MA(1)-filtered
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intraday returns.

RVt+1 ≡
60∑
j=1

r2
t+j/60 (4.1)

To avoid problems arising from the non-stationary behavior usually observed in stock
prices, we take the natural logarithmic differences between two successive trading days. The
first panel of Figure 4.1 shows the movements of returns, rt, which supports the view that
the return series is highly dynamic. The return series also tends to be clustered together
over time. The second panel of Figure 4.1 shows the movement of absolute return residuals
|ε̂t|, which are widely used to estimate daily volatility, and the third panel of Figure 4.1
shows the turbulent movement of realized volatility. As explained above, this tendency may
indicate herd behavior in the stock market. Although their movements seem to be similar,
absolute return residuals might have more variation than realized volatility except when
measured at several extreme values. Absolute return residuals are obtained from estimating
the following regression model:

rt = c+

2∑
i=1

airt−i +

4∑
j=1

bjDjt + εt (4.2)

where c is a constant, Djt values’ are day-of-the-week dummies used to capture differences in
mean returns, and rt−i values’ are lagged returns. Based on Schwarz’s information criterion
(SIC), the two lag length is chosen to control for serial dependence in returns.

Figure 4.1 KOSPI returns, absolute return residuals, RV, and DTLV

Table 4.1 reports the preliminary statistics for returns, trading volume, absolute return
residuals, and realized volatility. The coefficients of skewness and kurtosis for realized volatil-
ity and trading volumes support the view that each distribution is not normal, coinciding
with the other empirical findings. In particular, the high kurtosis is attributed to large out-
liers that should be strongly associated with not only news but also herding in the market.
Jarque-Bera (JB) statistics for the series also reject normality at the conventional 5-percent
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level. Therefore, the series is commonly transformed with a logarithm in the existing liter-
ature.

We turn to the joint test of serial correlation. The Ljung-Box Q statistics are computed
up to the fifth lags. Under the null hypothesis with no serial correlation, such statistics
have an asymptotic chi-square distribution with five degrees of freedom. The Ljung-Box Q
statistics indicate a high serial correlation in the series except returns. In particular, the
high correlation in the realized volatility series indicates that herd behavior may be serially
correlated over time because the volatility is closely associated with herd behavior, and
partially supports the reliability of Equation (2.8).

As in previous literature (e.g., Fleming, 2006; Park, 2007), the raw trading volume is
transformed by a natural logarithm to stabilize the variability of the trading volume series
and more reduce the non-normality of its distribution that is found by JB test statistic in
Table 4.1. We test for the stationarity of the log-trading volume and the realized volatility
series using the augmented Dickey-Fuller (1979) and Phillips-Perron (1988) tests of the
null of unit root against the stationary series. The results, provided in Table 4.2, indicate
that both the log-trading volume and the realized volatility series are clearly stationary.
The stationarity nature of these series allows us to apply traditional economic models to
empirical works.

Table 4.1 Summary statistics for rt, |ε̂t|, realized volatility, and trading volume

Statistics rt Trading volume Realized Volatility |ε̂t|
Mean 0.0728 368600635 1.0215 0.9689

Median 0.1499 359542950 0.7468 0.7045
Maximum 5.5223 967839370 10.1767 7.195
Minimum -7.1825 136329089 0.082 0.0032
Variance 1.7582 1.45E+16 0.9099 0.8094

Skewness(Sk=0) -0.5615(0.0000) 0.6649(0.0000) 3.6523(0.0000) 1.7998(0.0000)
Kurtosis(Ku=0) 2.2368(0.0000) 0.5411(0.0004) 19.9037(0.0000) 5.0748(0.0000)

JB 268.35(0.0000) 88.373(0.0000) 19273.04(0.0000) 27.4030(0.0000)
Q(5) 8.3916(0.0782) 3310.81(0.0000) 1475.99(0.0000) 147.207(0.0000)
Q2(5) 204.569(0.0000) 2851.03(0.0000) 687.582(0.0000) 196.212(0.0000)

JB is the Jarque-Bera normality test, and Q (M) and Q2 (M) are the Ljung-Box Q statistics at lag M
for series and squared series. P-values are in parentheses.

Table 4.2 Unit root tests on the stationarity of log-trading volumes and realized volatility

M Dickey-Fuller (M) Phillips-Perron (M)

Log-Trading Volumes
5 -29.150(0.00) -83.881(0.00)
10 -18.920(0.00) -100.940(0.00)

Realized Volatility
5 -84.520(0.00) -335.221(0.00)
10 -80.724(0.00) -437.080(0.00)

P-values are in parentheses and M is the number of lags.

To filter out the trend and, among others, a day-of-the-week effect, we estimate a regression
of the log-trading volumes (LVt) on a constant, a linear trend (T), and a quadratic trend
(T2), using four day-of-the-week dummies (Djt) for Monday through Thursday by OLS
estimation method. The fourth panel of Figure 4.1 shows the detrended log-trading volumes,
which will be used in our empirical study.
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4.2. Detecting trading days with herd behavior

Trading days with herd behavior in the South Korean stock market are detected by the
method described in the section 3.2. The calculation of realized volatility belonging to the
first step previously completed. For the next step, a cubic smoothing spline function as a
nonparametric method is used to estimate the relationship between volatility and trading
volume. Figure 4.2 graphs the estimated spline function. The noteworthy estimation result
is that while the variables have a positive relationship at low volatile periods, their relation-
ship changes from positive to negative as trading volumes become larger. Intuitively, this
phenomenon might be largely due to herd behavior which induces their negative relationship.

Figure 4.2 Regression spline and trading days with herding
(RV = realized volatility, DTLV = detrended log-trading volumes)

From the results of the third step, Figure 4.3 was drawn. The second panel shows the
jump components defined in Equation (3.5), and the third panel shows the significant jumps
estimated by Equation (3.8) corresponding to a = 0.99. From the Figure 4.3, we find that
the most of the days with significant jumps have high volatility, which is consistent with
the result of Andersen et al. (2007). A more interesting finding from the figure is that there
are days that have no the significant jumps but much higher volatility. For example, on
Jan. 22, 2008, the jump component is only 0.3780 while realized volatility is quite high,
i.e., 5.6829. Obviously, this empirical finding cannot be explained by the information-flow
paradigm in which market volatility is attributed to news (or public information), and
therefore, this finding supports the possibility of herd behavior in the stock market. In the
final step, we select days that have no news (i.e. no significant jumps) but have higher
volatility than estimated volatility using the cubic smoothing spline function in the second
step. As a consequence of this process, the selected days are considered as the days with
herd behavior. These days are depicted by red dots in Figure 4.2. According to the results,
22 percent of total trading days include significant jumps and 26 percent of trading days
without significant jumps exhibit herd behavior. The high probability of herding stands in
existing literatures on the herd behavior such as Chang et al. (2000) and Kim et al. (2004)
among others.
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Figure 4.3 The jump component and the significant jumps

4.3. Estimation of the herd-behavior-stochastic-volatility model

Given our emphasis on herd behavior, we now turn to estimation of the herd-behavior-
stochastic-volatility model using KOSPI returns and trading volumes, and compare the
estimation result with other models:

Model 1 (SV):
rt = a0 + a1rt−1 + a2rt−2 + exp(ht/2)εt

ht = µ+ φ(ht−1 − µ) + ηt(4.3) (4.3)

Model 2 (SVJ):
rt = a0 + a1rt−1 + a2rt−2 + exp(ht/2)εt

ht = µ+ φ(ht−1 − µ) + λtqt + ηt (4.4)

Model 3 (HBSV):
rt = a0 + a1rt−1 + a2rt−2 + a3θt + a4JDt + exp(ht/2)εt

ht = (µ1 + φ1(ht−1 − µ1) + β1Vt)θt + (µ2 + φ2(ht−1−µ2) + β2Vt + δJt)(1− θt)+ηt (4.5)

The discrete-time representation of SV is the approximation of the continuous-time one.
Thus, to maintain consistency with the continuous-time diffusion, including the terms for
previous returns should not be valid. From a statistical point of view, however, the general
discrete-time representation of SV do have serious disadvantage due to unrealistic assump-
tion of no autocorrelation in returns. Even in KOSPI returns used in this paper, there is
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significant autocorrelation. With the statistical problems, the advantage of consistency has
diminished considerably. Hence, sharing the same spirit as in Harvey et al. (1994) or Shep-
hard (1996), it is assumed that returns can be decomposed into two components: shift and
scale components. So, unlike Equation (3.9), the terms for constant and previous returns
are included for shift component in the empirical models.

Model 1 is a simple stochastic volatility model and Model 2 is a stochastic volatility
model including a jump variable whose coefficient is changed over time. In this model qt
is a Bernoulli random variable that takes 1 with probability ζ and 0 with probability 1 -
ζ and the size of jumps is denoted by λt ∼ N(m, ν),where m and ν are random variables
with normal and gamma distributions respectively. Model 3 is the herd-behavior-stochastic-
volatility model whose stochastic volatility equation is switched corresponding to states of
herd behavior, and it incorporates a jump dummy (JDt) in mean equation, which is 1 with a
jump component and 0 without a jump component. This dummy is obtained from days with
significant jumps in Section 3.1. In Model 3, Jt denotes jumps estimated by test statistics
for jumps in Equation (3.8).

The estimation results of Model 1 and Model 2 are reported in Table 4.3 and those of
Model 3 are reported in Table 4.4. Each table contains the mean, standard deviation, 95%
confidence interval of the posterior distribution for parameters, and deviance information
criterion (DIC). For the posterior computation in the stochastic volatility models, WinBUGS
is used because it is well known that WinBUGS provides an efficient implementation of the
MCMC algorithm. WinBUGS uses Gibbs sampling (Geman and Geman, 1984) and the
Metropolis method (Metropolis et al. 1953) to generate a Markov chain by sampling from
conditional distributions. The posterior quantities are computed from 10,000 draws of the
MCMC algorithm, collected after an initial burn-in period of 1,000 iterations. Note that
although it is known that 5,000 draws are large enough to get accurate estimation using
an efficient Metropolis algorithm (e.g., Chib et al. 2002), this paper takes 10,000 draws for
optimal implementation in terms of speed and accuracy.

To estimate the herd-behavior-stochastic-volatility model via the MCMC algorithm, we
should specify suitable prior distributions on unknown parameter vector Ψ and assume each
parameter to be independent. For instance, a prior density function of Ψ = (µγ , µ, φ, σ

2
η) for

Model 1 is

f(Ψ) = f(µγ)f(µ)f(φ)f(σ2
η) (4.6)

In this empirical study, prior distributions on Ψ basically follow from the specification of
Chib et al. (2002) or Yu and Meyer (2006). Thus, the following prior distributions are
adopted: ai ∼ N(0, 100), i = 0, · · · , 4, µi ∼ N(0, 100), i = 1, 2, βi ∼ N(0, 100), i = 1, 2,
δ ∼ N(0, 100), φ∗i ∼ B(20, 1.5), i = 1, 2, where φ∗i = (φi + 1)/2, λt ∼ N(m, ν), where
m ∼ N(0, 100), ν ∼ Γ(2.5, 0.025).

As expected, the estimation results of Model 1 show that the parameter of volatility
persistence φ is highly credible and its value, 0.9690, close to one confirms a strong daily
persistence in volatility. The estimation results of Model 2 with jump components also sup-
port the strong persistence, in accordance with typical estimates reported in the literature.
Note that the probability ζ is quite low and jumps are negatively related to volatility. In
both models, since the estimates for α1, α2, and µ are close to 0 in terms of 95% CI and
not credible at all, the parameters can be negligible in the models.



1212 Beum-Jo Park

Table 4.3 Estimation results of Model 1 (SV) and Model 2 (SVJ)

Parameter
Model 1 Model 2

Mean SD 95% CI Mean SD 95% CI
α0 0.1564 0.0356 (0.0851 0.2268) 0.1635 0.0352 (0.0941 0.2329)
α1 0.0339 0.032 (-0.0282 0.0968) 0.0272 0.0316 (-0.0345 0.0902)
α2 -0.0338 0.0318 (-0.0969 0.0285) -0.0267 0.0322 (-0.0914 0.0355)
µ 0.2816 0.1918 (-0.1285 0.6474) 0.2891 0.1806 (-0.0686 0.6524)
φ 0.9690 0.0122 (0.9431 0.9894) 0.9650 0.0137 (0.9304 0.9856)
ζ 0.0017 0.0012 (0.0002 0.0049)
m -14.920 0.0536 (-15.050 -14.830)
ση 0.1705 0.0311 (0.1156 0.2268) 0.1938 0.0327 (0.1543 0.2908)

DIC 3277 3270
‘95% CI’ denotes 95% confidence interval and DIC stands for deviance information criterion.

The empirical evidence on herd behavior from Figure 4.2 motivates us to specify Model 3
that appears to be an improvement over the other models. From the estimates for important
parameters (φ, β, δ) in the stochastic volatility equation, we can derive several interesting
findings: First, when we compute exp(µ /2), interpreted as mode volatility, its values are
1.9251 with herding and 0.8080 without herding, respectively. This means that the daily
volatility remarkably increases under herding phenomenon. The empirical result is consis-
tent with many previous studies which argue that herding causes market unstability (e.g.,
Lux and Marchesi, 1999; Sornette and Malevergne, 2001). Furthermore, whereas the daily
volatility is still persistent, it is significantly reduced by the indicator function for herd
behavior, i.e., φ1 =0.8322, φ2 =0.6230, and this reduction is relatively prominent on days
without herding. In these results, there is quite important point that needs to be addressed.
The volatility persistence that is closely associated with herding and high volatility does not
persist in the absence of herding. Second, the estimates of parameter for trading volume are
β1 =-0.1088, β2 =0.0336, implying that while the relationship between volatility and trading
volume is positive in the absence of herding, the relationship is negative in the presence of
herding. This is consistent with the theoretical intuition from the modified Cont-Bouchaud
model, that herd behavior gives rise to high volatility but low trading volume in contrast
with the flows of information because herding reduces heterogeneity in agents, leading to
reduction of the probability of independent trading. However, since the estimates are not
highly credible, the finding has little empirical implication. Third, the parameter δ for jumps,
which presents the effect of news on volatility separately from herd behavior, is 1.4020 and
is highly credible. This result shares the same spirit as the information paradigm that news
is likely to increase the magnitude of change in price, i.e., volatility.

To highlight the adequacy of the herd-behavior-stochastic-volatility model, we can com-
pute the deviance information criterion (DIC) (Berg et al. 2004) as a model comparison
method due to its advantage in increasingly complex statistical models because it combines
a Bayesian measure of fit with a measure of model complexity. Although the Akaike in-
formation criterion (AIC) is a general method for comparing alternative models, it is hard
to apply AIC for stochastic volatility models. The reason is that unlike a nonhierarchical
Bayesian model with only parameter vector Ψ, the number of parameters exceeds the num-
ber of observations in stochastic volatility models where the parameter vector should be
augmented by an unobserved volatility vector h = (h1, · · · , hT).

Therefore, this study adopts DIC that is an extension of AIC to complex hierarchical
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Table 4.4 Estimation results of Model 3 (HBSV)

Parameter Model 3
Mean SD 95% CI

α0 0.2525 0.0432 (0.1674 0.3387)
α1 4.3660 1.0180 (2.3210 6.0210)
α2 -4.3570 1.0200 (-6.0120 -2.3090)
α3 -0.6178 0.0995 (-0.8123 -0.4212)
α4 -0.0228 0.0882 (-0.1988 0.1488)

µ
µ1 1.3100 0.6640 (-1.1450 2.1170)
µ2 -0.4263 0.1773 (-0.6936 0.1053)

φ
φ1 0.8322 0.0769 (0.6919 0.9888)
φ2 0.6230 0.0917 (0.3383 0.7175)

β
β1 -0.1088 0.1385 (-0.3617 0.1621)
β2 0.0336 0.0865 (-0.1153 0.2484)

δ 1.4020 0.1494 (1.0310 1.6410)
ση 0.2752 0.0521 (0.1959 0.4013)

DIC 3235
‘95% CI’ denotes 95% confidence interval and DIC stands for
deviance information criterion.

models. DIC provides an efficient approach to identify the most appropriate model with
the smallest value like AIC. In Tables 4.3 and 4.4, estimated values of DIC for the models
are reported. Model 3 with herd behavior has a remarkably smaller value of DIC than the
other models, and thereby, it appears to be the most appropriate model according to DIC.
The implication taken from the model comparison is that the results empirically support
the validity of both the method of detecting herd behavior and the specification of the
herd-behavior-stochastic-volatility model.

5. Concluding remarks

Extending the percolation model, developed by Cont and Bouchaud (2000), this paper
has derived an interesting result that the relationship between volatility and trading vol-
ume can be negative in the presence of herding, which cannot be explained by the models
within information-flow paradigm. Based on the result and the concepts of realized volatility
and realized bipower variation, this paper has presented a method for detecting days with
herd behavior. Furthermore, from a practical perspective, the paper has specified the herd-
behavior-stochastic- volatility model and suggested the Markov chain Monte Carlo (MCMC)
method to estimate the model efficiently.

To detect herd behavior and its effect on both volatility persistence and the relationship
between volatility and trading volume in empirical work, we have used five-minute frequency
data on KOSPI in the stock market of South Korea, covering the period between January
2, 2004 and February 29, 2008. The estimation results worth mentioning are as follows:
First, a significant proportion of trading days (i.e., 26 percent) exhibit herd behavior. That
is, they have higher volatility than estimated one given trading volume but no significant
jumps. Second, the daily volatility remarkably increases under herding behavior. Third, the
volatility persistence is closely associated with herding and high volatility does not persist
in the absence of herding. Fourth, the relationship between volatility and trading volume
is negative in the presence of herding even if it is not highly credible. Finally, the herd-
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behavior-stochastic-volatility model provides a substantial improvement over the standard
stochastic volatility models, as is evident from the estimated values of DIC.

One of the most important next steps in this research stream is to develop a more so-
phisticated test statistic for detecting herd behavior. Further, we might also consider a
stochastic volatility representation for herding as a more reliable model that accounts for
the asymmetric impact of herding on price fluctuation.
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