• 제목/요약/키워드: Markov chain Monte Carlo algorithm

검색결과 69건 처리시간 0.024초

Approximating Exact Test of Mutual Independence in Multiway Contingency Tables via Stochastic Approximation Monte Carlo

  • Cheon, Soo-Young
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.837-846
    • /
    • 2012
  • Monte Carlo methods have been used in exact inference for contingency tables for a long time; however, they suffer from ergodicity and the ability to achieve a desired proportion of valid tables. In this paper, we apply the stochastic approximation Monte Carlo(SAMC; Liang et al., 2007) algorithm, as an adaptive Markov chain Monte Carlo, to the exact test of mutual independence in a multiway contingency table. The performance of SAMC has been investigated on real datasets compared to with existing Markov chain Monte Carlo methods. The numerical results are in favor of the new method in terms of the quality of estimates.

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

베이지안 통계 추론 (On the Bayesian Statistical Inference)

  • 이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • 본 논문은 베이지안 통계 추론에 대하여 논의한다. 논문은 베이지안 추론, Markov Chain과 Monte Carlo 적분, MCMC(Markov Chain Monte Carlo) 기법, Metropolis-Hastings 알고리즘, Gibbs 샘플링, Maximum Likelihood Estimation, EM 알고리즘, 상실된 데이터 보완 기법, BMA(Bayesian Model Averaging) 순서로 논의를 진행한다. 이러한 통계적 기법들은 대용량의 데이터를 처리하는 생물학, 의학, 생명 공학, 과학과 공학, 그리고 일반 데이터 조사와 처리 등에 사용되고 있으며, 최적의 추론 결과를 이끌어 내는데 중요한 방법을 제공하고 있다. 그리고 마지막으로 PC(Principal Component) 분석 기법에 대하여 논의한다. PC 분석 기법도 데이터 분석과 연구에 많이 활용된다.

  • PDF

Markov Chain Monte Carol estimation in Two Successive Occasion Sampling with Radomized Response Model

  • Lee, Kay-O
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.211-224
    • /
    • 2000
  • The Bayes estimation of the proportion in successive occasions sampling with randomized response model is discussed by means of Acceptance Rejection sampling. Bayesian estimation of transition probabilities in two successive occasions is suggested via Markov Chain Monte Carlo algorithm and its applicability is represented in a numerical example.

  • PDF

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

A Bayesian Approach for Accelerated Failure Time Model with Skewed Normal Error

  • Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.268-275
    • /
    • 2003
  • We consider the Bayesian accelerated failure time model. The error distribution is assigned a skewed normal distribution which is including normal distribution. For noninformative priors of regression coefficients, we show the propriety of posterior distribution. A Markov Chain Monte Carlo algorithm(i.e., Gibbs Sampler) is used to obtain a predictive distribution for a future observation and Bayes estimates of regression coefficients.

멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능 (Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter)

  • 황유민;이선의;이상운;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.104-110
    • /
    • 2014
  • 본 논문에서는 무인항공기인 방송용 멀티콥터를 이용한 Full-HD급 이상 화질의 이미지를 효율적으로 전송하기 위해 이미지 압축 센싱 기법을 적용하고, Sparse 신호의 효율적 복원을 위해 Turbo 알고리즘과 Markov chain Monte Carlo (MCMC) 알고리즘의 복원 성능을 모의실험을 통해 비교 분석하였다. 제안된 복원 기법은 압축 센싱에 기반하여 데이터 용량을 줄이고 빠르고 오류 없는 원신호 복원에 중점을 두었다. 다수의 이미지 파일로 모의실험을 진행한 결과 Loopy belief propagation(BP) 기반의 Turbo 복원 알고리즘이 Gibbs sampling기반 알고리즘을 수행하는 MCMC 알고리즘 보다 평균 복원 연산 시간, NMSE 값에서 우수하여 보다 효율적인 복원 방법으로 생각된다.

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석 (Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique)

  • 최정현;장수형;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Posterior density estimation for structural parameters using improved differential evolution adaptive Metropolis algorithm

  • Zhou, Jin;Mita, Akira;Mei, Liu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.735-749
    • /
    • 2015
  • The major difficulty of using Bayesian probabilistic inference for system identification is to obtain the posterior probability density of parameters conditioned by the measured response. The posterior density of structural parameters indicates how plausible each model is when considering the uncertainty of prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting (DREAM) algorithm boasts a population-based mechanism, which nms multiple different Markov chains simultaneously, and a global optimum exploration ability. This paper proposes an improved differential evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with limited output data and noise polluted measurements.