• Title/Summary/Keyword: Markov Network

Search Result 371, Processing Time 0.023 seconds

Performance of Dynamic Spectrum Access Scheme Using Embedded Markov Chain (임베디드 마르코프 체인을 이용한 동적 스펙트럼 접속 방식의 성능 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2036-2040
    • /
    • 2013
  • In this paper, we consider two dynamic spectrum access schemes in cognitive network with two independent and identically distributed channels. Under the first scheme, secondary users switch channel only after transmission failure. On the other hand, under the second one, they switch channel only after successful transmission. We develop a mathematical model to investigate the performance of the second one and analyze the model using 3-dimensional embedded Markov chain. Numerical results and simulations are presented to compare between the two schemes.

Indoor Network Map Matching by Hidden Markov Model (은닉 마르코프 모델을 이용한 실내 네트워크 맵 매칭)

  • Kim, Tae Hoon;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2015
  • Due to recent improvement of various sensor technologies, indoor positioning becomes available. However, Indoor positioning technologies by Wi-Fi radio map and acceleration sensor and digital campus still have a certain level of errors and a number of researches have been done to increase the positioning accuracy of the indoor positioning. If we could provide a room level accuracy, indoor location based services with current indoor positioning methods such as Wi-Fi radio map and acceleration sensors would be possible. In this paper, we propose an indoor map matching method to provide a room level accuracy based on hidden markov model.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

A study on the identification of hub cities and delineation of their catchment areas based on regional interactions (지역 거점도시 식별 및 상호작용에 따른 영향권역 설정에 관한 연구)

  • Kim, Dohyeong;Woo, Myungje
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.5-22
    • /
    • 2018
  • While the competitiveness of small and medium sized cities has become important for balanced development at the national scale, they have experienced continuous decline in population and employment, particularly those in non-capital regions. In addition, some of small and medium sized cities have been classified into shrinking cities that have declined due to their long-term structural reasons. To address these issues, a regional approach, by which a hub city and its surrounding small and medium sized cities can collaborate has been suggested. Given this background, the purpose of this study is to identify and delineate hub cities and their impact areas by using travel data as a functional network index. This study uses a centrality index to identify the hub cities of small and medium sized cities and Markov-chain model and cluster analysis to delineate regional boundaries. The mean first passage time (MFPT) generated from the Markov-chain model can be interpreted as functional distance of each region. The study suggests a methodological approach delineating the boundaries of regions incorporating functional relationships of hub cities and their impact areas, and provides 59 hub cities and their impact areas. The results also provide policy implications for regional spatial planning that addresses appropriate planning boundaries of regions for enhancing the economic competitiveness of small and medium sized cities and ensuring services for shrinking cities.

Implementation of the Automatic Speech Editing System Using Keyword Spotting Technique (핵심어 인식을 이용한 음성 자동 편집 시스템 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.3
    • /
    • pp.119-131
    • /
    • 1998
  • We have developed a keyword spotting system for automatic speech editing. This system recognizes the only keyword 'MBC news' and then sends the time information to the host system. We adopted a vocabulary dependent model based on continuous hidden Markov model, and the Viterbi search was used for recognizing the keyword. In recognizing the keyword, the system uses a parallel network where HMM models are connected independently and back-tracking information for reducing false alarms and missing. We especially focused on implementing a stable and practical real-time system.

  • PDF

A Dynamical Hybrid CAC Scheme and Its Performance Analysis for Mobile Cellular Network with Multi-Service

  • Li, Jiping;Wu, Shixun;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1522-1545
    • /
    • 2012
  • Call admission control (CAC) plays an important role in mobile cellular network to guarantee the quality of service (QoS). In this paper, a dynamic hybrid CAC scheme with integrated cutoff priority and handoff queue for mobile cellular network is proposed and some performance metrics are derived. The unique characteristic of the proposed CAC scheme is that it can support any number of service types and that the cutoff thresholds for handoff calls are dynamically adjusted according to the number of service types and service priority index. Moreover, timeouts of handoff calls in queues are also considered in our scheme. By modeling the proposed CAC scheme with a one-dimensional Markov chain (1DMC), some performance metrics are derived, which include new call blocking probability ($P_{nb}$), forced termination probability (PF), average queue length, average waiting time in queue, offered traffic utilization, wireless channel utilization and system performance which is defined as the ratio of channel utilization to Grade of Service (GoS) cost function. In order to validate the correctness of the derived analytical performance metrics, simulation is performed. It is shown that simulation results match closely with the derived analytic results in terms of $P_{nb}$ and PF. And then, to show the advantage of 1DMC modeling for the performance analysis of our proposed CAC scheme, the computing complexity of multi-dimensional Markov chain (MDMC) modeling in performance analysis is analyzed in detail. It is indicated that state-space cardinality, which reflects the computing complexity of MDMC, increases exponentially with the number of service types and total channels in a cell. However, the state-space cardinality of our 1DMC model for performance analysis is unrelated to the number of service types and is determined by total number of channels and queue capacity of the highest priority service in a cell. At last, the performance comparison between our CAC scheme and Mahmoud ASH's scheme is carried out. The results show that our CAC scheme performs well to some extend.

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Semantic Document-Retrieval Based on Markov Logic (마코프 논리 기반의 시맨틱 문서 검색)

  • Hwang, Kyu-Baek;Bong, Seong-Yong;Ku, Hyeon-Seo;Paek, Eun-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.663-667
    • /
    • 2010
  • A simple approach to semantic document-retrieval is to measure document similarity based on the bag-of-words representation, e.g., cosine similarity between two document vectors. However, such a syntactic method hardly considers the semantic similarity between documents, often producing semantically-unsound search results. We circumvent such a problem by combining supervised machine learning techniques with ontology information based on Markov logic. Specifically, Markov logic networks are learned from similarity-tagged documents with an ontology representing the diverse relationship among words. The learned Markov logic networks, the ontology, and the training documents are applied to the semantic document-retrieval task by inferring similarities between a query document and the training documents. Through experimental evaluation on real world question-answering data, the proposed method has been shown to outperform the simple cosine similarity-based approach in terms of retrieval accuracy.

Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network (심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용)

  • Han, Jaemin;Kim, Min Sik;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.