• Title/Summary/Keyword: Markov Chain and Monte Carlo technique

Search Result 29, Processing Time 0.027 seconds

Stochastic Fatigue Life Assesment based on Bayesian-inference (베이지언 추론에 기반한 확률론적 피로수명 평가)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • In general, fatigue analysis is performed by using deterministic model to estimate the optimal parameters. However, the deterministic model is difficult to clearly describe the physical phenomena of fatigue failure that contains many uncertainty factors. With regard to this, efforts have been made in this research to compare with the deterministic model and the stochastic models. Firstly, One deterministic S-N curve was derived from ordinary least squares technique and two P-S-N curves were estimated through Bayesian-linear regression model and Markov-Chain Monte Carlo simulation. Secondly, the distribution of Long-term fatigue damage and fatigue life were predicted by using the parameters obtained from the three methodologies and the long-term stress distribution.

MCMC Approach for Parameter Estimation in the Structural Analysis and Prognosis

  • An, Da-Wn;Gang, Jin-Hyuk;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.641-649
    • /
    • 2010
  • Estimation of uncertain parameters is required in many engineering problems which involve probabilistic structural analysis as well as prognosis of existing structures. In this case, Bayesian framework is often employed, which is to represent the uncertainty of parameters in terms of probability distributions conditional on the provided data. The resulting form of distribution, however, is not amenable to the practical application due to its complex nature making the standard probability functions useless. In this study, Markov chain Monte Carlo (MCMC) method is proposed to overcome this difficulty, which is a modern computational technique for the efficient and straightforward estimation of parameters. Three case studies that implement the estimation are presented to illustrate the concept. The first one is an inverse estimation, in which the unknown input parameters are inversely estimated based on a finite number of measured response data. The next one is a metamodel uncertainty problem that arises when the original response function is approximated by a metamodel using a finite set of response values. The last one is a prognostics problem, in which the unknown parameters of the degradation model are estimated based on the monitored data.

Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik;Kim, Dal Ho;Kang, Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.427-434
    • /
    • 2001
  • In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

  • PDF

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-strength model

  • Chandra, N.;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • In this article we attempted reliability analysis of a component under the stress-strength pattern with both classical as well as Bayesian techniques. The main focus is made to develop the theory for dealing the reliability problems in various circumstances for bivariate environmental set up in context of Bayesian paradigm. A stress-strength based model describes the life of a component which has strength (Y) and is subjected to stress(X). We develop the Bayes and moment estimators of reliability of a component for each of the three possible conditions, under the assumption that the two stresses (i.e. $X_1$ and $X_2$) on a component are dependent and follow a Bivariate exponential (BVE) of Marshall-Olkin distribution, the strength of a component (Y) following exponential distribution is independent of the stresses. The simulation study is performed with Markov Chain Monte Carlo technique via Gibbs sampler to obtain the estimates of Bayes estimators of reliability, are compared with moment estimators of reliabilities on the basis of absolute biases.

  • PDF

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

A Bayesian Inference for Power Law Process with a Single Change Point

  • Kim, Kiwoong;Inkwon Yeo;Sinsup Cho;Kim, Jae-Joo
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The nonhomogeneous poisson process (NHPP) is often used to model repairable systems that are subject to a minimal repair strategy, with negligible repair times. In this situation, the system can be characterized by its intensity function. There have been many NHPP models according to intensity functions. However, the intensity function of system in use can be changed because of repair or its aging. We consider the single change point model as the modification of the power law process. The shape parameter of its intensity function is changed before and after the change point. We detect the presence of the change point using Bayesian methodology. Some numerical results are also presented.

A probabilistic framework for drought forecasting using hidden Markov models aggregated with the RCP8.5 projection

  • Chen, Si;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.197-197
    • /
    • 2016
  • Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.

  • PDF

A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics (유역특성인자를 활용한 Sacramento 장기유출모형의 매개변수 지역화 기법 연구)

  • Kim, Tae-Jeong;Jeong, Ga-In;Kim, Ki-Young;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.793-806
    • /
    • 2015
  • The simulation of natural streamflow at ungauged basins is one of the fundamental challenges in hydrology community. The key to runoff simulation in ungauged basins is generally involved with a reliable parameter estimation in a rainfall-runoff model. However, the parameter estimation of the rainfall-runoff model is a complex issue due to an insufficient hydrologic data. This study aims to regionalize the parameters of a continuous rainfall-runoff model in conjunction with a Bayesian statistical technique to consider uncertainty more precisely associated with the parameters. First, this study employed Bayesian Markov Chain Monte Carlo scheme for the estimation of the Sacramento rainfall-runoff model. The Sacramento model is calibrated against observed daily runoff data, and finally, the posterior density function of the parameters is derived. Second, we applied a multiple linear regression model to the set of the parameters with watershed characteristics, to obtain a functional relationship between pairs of variables. The proposed model was also validated with gauged watersheds in accordance with the efficiency criteria such as the Nash-Sutcliffe efficiency, index of agreement and the coefficient of correlation.

Shadow Economy, Corruption and Economic Growth: An Analysis of BRICS Countries

  • NGUYEN, Diep Van;DUONG, My Tien Ha
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.665-672
    • /
    • 2021
  • The paper examines the impact of shadow economy and corruption, along with public expenditure, trade openness, foreign direct investment (FDI), inflation, and tax revenue on the economic growth of the BRICS countries. Data were collected from the World Bank, Transparency International, and Heritage Foundation over the 1991-2017 period. The Bayesian linear regression method is used to examine whether shadow economy, corruption and other indicators affect the economic growth of countries studied. This paper applies the normal prior suggested by Lemoine (2019) while the posterior distribution is simulated using Monte Carlo Markov Chain (MCMC) technique through the Gibbs sampling algorithm. The results indicate that public expenditure and trade openness can enhance the BRICS countries' economic growth, with the positive impact probability of 75.69% and 67.11%, respectively. Also, FDI, inflation, and tax revenue positively affect this growth, though the probability of positive effect is ambiguous, ranging from 51.13% to 56.36%. Further, the research's major finding is that shadow economy and control of corruption have a positive effect on the economic growth of the BRICS countries. Nevertheless, the posterior probabilities of these two factors are 62.23% and 65.25%, respectively. This result suggests that their positive effect probability is not high.