• 제목/요약/키워드: Markov Chain Method

검색결과 339건 처리시간 0.024초

An extension of Markov chain models for estimating transition probabilities (추이확률의 추정을 위한 확장된 Markov Chain 모형)

  • 강정혁
    • Korean Management Science Review
    • /
    • 제10권2호
    • /
    • pp.27-42
    • /
    • 1993
  • Markov chain models can be used to predict the state of the system in the future. We extend the existing Markov chain models in two ways. For the stationary model, we propose a procedure that obtains the transition probabilities by appling the empirical Bayes method, in which the parameters of the prior distribution in the Bayes estimator are obtained on the collaternal micro data. For non-stationary model, we suggest a procedure that obtains a time-varying transition probabilities as a function of the exogenous variables. To illustrate the effectiveness of our extended models, the models are applied to the macro and micro time-series data generated from actual survey. Our stationary model yields reliable parameter values of the prior distribution. And our non-stationary model can predict the variable transition probabilities effectively.

  • PDF

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Gaussian Approximation of Stochastic Lanchester Model for Heterogeneous Forces (혼합 군에 대한 확률적 란체스터 모형의 정규근사)

  • Park, Donghyun;Kim, Donghyun;Moon, Hyungil;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제42권2호
    • /
    • pp.86-95
    • /
    • 2016
  • We propose a new approach to the stochastic version of Lanchester model. Commonly used approach to stochastic Lanchester model is through the Markov-chain method. The Markov-chain approach, however, is not appropriate to high dimensional heterogeneous force case because of large computational cost. In this paper, we propose an approximation method of stochastic Lanchester model. By matching the first and the second moments, the distribution of each unit strength can be approximated with multivariate normal distribution. We evaluate an approximation of discrete Markov-chain model by measuring Kullback-Leibler divergence. We confirmed high accuracy of approximation method, and also the accuracy and low computational cost are maintained under high dimensional heterogeneous force case.

Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern (RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구)

  • 김희철;이승주
    • The Korean Journal of Applied Statistics
    • /
    • 제13권2호
    • /
    • pp.505-514
    • /
    • 2000
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced mixture failure model of Rayleigh and Erlang(2) pattern. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Gibbs steps are proposed to perform the Bayesian inference of such models. For model determination, we explored sum of relative error criterion that selects the best model. A numerical example with simulated data set is given.

  • PDF

An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (1) - Reservoir Sediment Estimation (저수지 장기운영을 위한 퇴적토사의 효율적 관리(1) - 저수지 퇴사량 산정)

  • Ahn, Jae Hyun;Jang, Su Hyung;Choi, Won Suk;Yoon, Yong Nam
    • Journal of Korean Society on Water Environment
    • /
    • 제22권6호
    • /
    • pp.1088-1093
    • /
    • 2006
  • In this study, the method of annual sediment estimation for reservoir long-term operation is proposed. Long-term daily precipitation and evaporation are predicted by Markov Chain. Using these values, reservoir inflow is simulated by NWS-PC model. Reservoir sediment load is estimated by sediment rating relation curve which is observed. From the simulation results, it was found that each simulated value by Markov Chain and NWS-PC was well compared to the observed ones and also estimated reservoir sediment was appropriate to the compared values using empirical equations. It is thought that the proposed method for estimation of reservoir sediment can be useful used to operate the reservoir.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

An approximation method for sojourn time distributions in general queueing netowkrs (일반적인 큐잉네트워크에서의 체류시간분포의 근사화)

  • 윤복식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제19권3호
    • /
    • pp.93-109
    • /
    • 1994
  • Even though sojourn time distributions are essential information in analyzing queueing networks, there are few methods to compute them accurately in non-product form queueing networks. In this study, we model the location process of a typical customer as a GMPH semi-Markov chain and develop computationally useful formula for the transition function and the first-passage time distribution in the GMPH semi-Markov chain. We use the formula to develop an effcient method for approximating sojourn time distributions in the non-product form queueing networks under quite general situation. We demonstrate its validity through numerical examples.

  • PDF

Inference of Parameters for Superposition with Goel-Okumoto model and Weibull model Using Gibbs Sampler

  • Heecheul Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제6권1호
    • /
    • pp.169-180
    • /
    • 1999
  • A Markov Chain Monte Carlo method with development of computation is used to be the software system reliability probability model. For Bayesian estimator considering computational problem and theoretical justification we studies relation Markov Chain with Gibbs sampling. Special case of GOS with Superposition for Goel-Okumoto and Weibull models using Gibbs sampling and Metropolis algorithm considered. In this paper discuss Bayesian computation and model selection using posterior predictive likelihood criterion. We consider in this paper data using method by Cox-Lewis. A numerical example with a simulated data set is given.

  • PDF

A Study on the Forecasting of the Number of End of Life Vehicles in Korea using Markov Chain (Markov Chain을 이용한 국내 폐차발생량 예측)

  • Lee, Eun-A;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제38권3호
    • /
    • pp.208-219
    • /
    • 2012
  • As the number of end-of-life vehicles (ELVs) has kept increasing, the management of ELV has also become one of the academic research focuses and European Union recently adopted the directive on ELVs. For the stakeholders has become a principle agent of dealing with all about ELVs, it is relevant investment decision to set up and to decide high-cost ELVs entity locations and to forecast future ELVs' amount in advance. In this paper, transition probability matrixes between months are made by using Markov Chain and the number of ELVs is predicted with them. This study will perform a great role as a fundamental material in Korea where just started having interests about recycling resources and studies related to the topic. Moreover, the forecasting method developed for this research can be adopted for other enhancements in different but comparable situations.