• Title/Summary/Keyword: Marketing Engineering

Search Result 692, Processing Time 0.026 seconds

ISV's Patent Protection, Downstream Capability and Product Portfolio to Join Platform Ecosystem (독립 SW기업의 플랫폼 생태계 참여 결정요인 연구)

  • Lim, Geun Seok;Ji, Yong Gu
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.43-62
    • /
    • 2022
  • This paper is a study to analyze when ISV(independent software company) has more active participation in the platform ecosystem. According to previous studies, companies are active in technological innovation when they can appropriate the outcome of innovation and when they have complementary assets (marketing, manufacturing capabilities, etc.) that can convert the innovation into value. The effect of these two conditions to join platform ecosystem is investigated. The duplication between the ISV's product portfolio and platform service is also included as an independent variable. The two sample groups are composed of independent SW companies that signed a partner agreement with platform companies and non-participating companies in the platform. As a result of empirical study, it is found that the patent rights do not affect participation in the platform. The ISVs might have believed that the benefits from cooperation with platform companies are greater than the risks of exposure to innovative technologies and unique Biz models. On the other hand, downstream's capability and the duplication of product portfolio affect participation in the platform. If ISVs have the downstream capability to transform cooperation into value creation, ISVs are actively participating in the platform. In addition, cooperation is active when the product portfolio is complementary to platform service rather than competition. This study is the empirical study of open innovation between Korean independent software companies and digital platform companies. There are similar prior studies abroad, but there are no similar studies in Korea. It is meaningful in that the determinants of platform ecosystem participation were investigated through empirical analysis by composing a sample group of companies participating in the platform ecosystem and companies not participating in the platform ecosystem.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.

A Study on the Cause Analysis and Countermeasures of the Traditional Market for Fires in the TRIZ Method (TRIZ 기법에 의한 재래시장 화재의 원인분석과 대책에 관한 연구)

  • Seo, Yong-Goo;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.95-102
    • /
    • 2017
  • The fires in the traditional markets often occur recently with the most of them expanded into great fires so that the damage is very serious. The status of traditional markets handling the distribution for ordinary people is greatly shrunk with the aggressive marketing of the local large companies and the foreign large distribution companies after the overall opening of the local distribution market. Most of the traditional markets have the history and tradition from decades to centuries and have grown steadily with the joys and sorrows of ordinary people and the development of the local economy. The fire developing to the large fire has the characteristics of the problem that the fire possibility is high since all products can be flammable due to the deterioration of facilities, the arbitrary modification of equipment, and the crowding of the goods for sale. Furthermore, most of the stores are petty with their small sizes so that the passage is narrow affecting the passage of pedestrians. Accordingly, the traditional markets are vulnerable to fire due to the initial unplanned structural problem so that the large scale fire damage occurs. The study is concerned with systematically classifying and analyzing the result by applying the TRIZ tool to the fire risk factors to extract the fundamental problem with the fire of the traditional market and make the active response. The study was done for preventing the fire on the basis of it and the expansion to the large fire in case of fire to prepare the specific measure to minimize the fire damage. On the basis of the fire expansion risk factor of the derived traditional market, the study presented the passive measures such as the improvement of the fire resisting capacity, the fire safety island, etc. and the active and institutional measures such as the obligation of the fire breaking news facilities, the application of the extra-high pressure pump system, the divided use of the electric line, etc.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Review: Distribution, Lactose Malabsorption, and Alleviation Strategies of Lactose Intolerance (유당불내증(Lactose Intolerance)의 발생 원인과 경감 방안에 대한 고찰)

  • Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Milk is called an almost complete food in terms of nutrition, especially for the younger generations because it contains a number of nutrients required for growth and development. Lactose intolerance is defined as a malabsorption of lactose in the intestine with some typical symptoms of abdominal pains and bloating, and occurred at 75% of global populations, which hampers milk consumption worldwide. Lacks of milk consumption in the underdeveloped countries frequently lead to many nutrients deficiencies, so that diseases including osteoporosis, hypertension, and colon cancer are more prevalent in the recent days. Lactose in foods needs to be hydrolyzed prior to intestinal absorption. The hydrolytic enzyme responsible for splitting lactose into its monomeric forms, glucose and galactose, is called as lactase or $\beta$-galactosidase. The former is primarily used as blood sugar and energy source and the latter used in glycolipid synthesis of brain tissues in infants. Lactose is clinically diagnosed with the breath hydrogen production test as well as intestinal biopsy. Reportedly, symptoms of lactose intolerance are widely prevalent at 25% of Europeans, 50 to 80% of Hispanics, South Indians, Africans, and Jews, almost 100% of Asians and native Americans. For the adults, phenotype of lactase persistence, which is able to hydrolyse lactose, is more common in the northern Europeans, but in the other area lactase non-persistence or adult-type hypolactasia is dominant. Genetic analysis on human lactase gene continued that lactase persistence was closely related to the err site of 1390 single nucleotide polymorphism from the 5'-end. To alleviate severity of lactose intolerance symptoms, some eating patterns including drinking milk a single cup or less, consumption along with other foods, whole milk rather than skimmed milk, and drink with live yogurt cultures, are highly recommended for the lactose maldigesters. Also, delay of gastric emptying is effective to avoid the symptoms from lactose intolerance. Frequency of lactose intolerance with conventional diagnosis is thought overestimated mainly because the subjects are exposed to too much lactose of 50 g rather than a single serving amount. Thus simple and accurate diagnostic method for lactose intolerance need to be established. It is thought that fermented milk products and low- or free lactose milks help improve currently stagnant milk consumption due to lactose intolerance which contributes to major barrier in milk marketing especially in Asian countries.

  • PDF

Opportunity Tree Framework Design For Optimization of Software Development Project Performance (소프트웨어 개발 프로젝트 성능의 최적화를 위한 Opportunity Tree 모델 설계)

  • Song Ki-Won;Lee Kyung-Whan
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.417-428
    • /
    • 2005
  • Today, IT organizations perform projects with vision related to marketing and financial profit. The objective of realizing the vision is to improve the project performing ability in terms of QCD. Organizations have made a lot of efforts to achieve this objective through process improvement. Large companies such as IBM, Ford, and GE have made over $80\%$ of success through business process re-engineering using information technology instead of business improvement effect by computers. It is important to collect, analyze and manage the data on performed projects to achieve the objective, but quantitative measurement is difficult as software is invisible and the effect and efficiency caused by process change are not visibly identified. Therefore, it is not easy to extract the strategy of improvement. This paper measures and analyzes the project performance, focusing on organizations' external effectiveness and internal efficiency (Qualify, Delivery, Cycle time, and Waste). Based on the measured project performance scores, an OT (Opportunity Tree) model was designed for optimizing the project performance. The process of design is as follows. First, meta data are derived from projects and analyzed by quantitative GQM(Goal-Question-Metric) questionnaire. Then, the project performance model is designed with the data obtained from the quantitative GQM questionnaire and organization's performance score for each area is calculated. The value is revised by integrating the measured scores by area vision weights from all stakeholders (CEO, middle-class managers, developer, investor, and custom). Through this, routes for improvement are presented and an optimized improvement method is suggested. Existing methods to improve software process have been highly effective in division of processes' but somewhat unsatisfactory in structural function to develop and systemically manage strategies by applying the processes to Projects. The proposed OT model provides a solution to this problem. The OT model is useful to provide an optimal improvement method in line with organization's goals and can reduce risks which may occur in the course of improving process if it is applied with proposed methods. In addition, satisfaction about the improvement strategy can be improved by obtaining input about vision weight from all stakeholders through the qualitative questionnaire and by reflecting it to the calculation. The OT is also useful to optimize the expansion of market and financial performance by controlling the ability of Quality, Delivery, Cycle time, and Waste.

The Analyses of Geographers지 Roles and Demands in Korean GIS Industries (GIS 산업에 있어서 지리학의 역할 및 수요에 대한 분석)

  • Chang Eun-mi
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.643-664
    • /
    • 2004
  • This study aims to review what geographers have contributed to GIS industries and national needs. To-be-geographers and geographers are expected to meet the gap between what we have teamed in school and what we have to do after graduation. The characteristics of GIS industry in the 1990 are summarized with approximate evaluation of the contribution of geographers in each stage. Author introduced the requirement for the licenses of geomatics and geospatial engineering experts and the other licenses, which are important to get a job in GIS industry from 2003 to 2004. A set of questionnaire on the user's requirements was given to GIS people in private companies and public GIS research centers and analyzed. Author found that they put an emphasis on hands-on experiences and programming skills. no advantages or geography such as capability or integration and inter-disciplinary collaboration were not appreciated. The prospects for the GIS tend to be positive but the reflectance of the prospect was not accompanied by at the same degree of preference for geography. Most government strategies for the next ten years' GIS focus on new-growth leading industries. SWOT(strength, weakness, opportunity, threat) analysis of geography for GIS industry will give some directions such as telematics, regional marketing strategies with web-based GIS technology, location based service. That means intra-disciplinary study in geography will evoke the potentiality of GIS, compared with interdisciplinary studies.

The Effect of Herding Behavior and Perceived Usefulness on Intention to Purchase e-Learning Content: Comparison Analysis by Purchase Experience (무리행동과 지각된 유용성이 이러닝 컨텐츠 구매의도에 미치는 영향: 구매경험에 의한 비교분석)

  • Yoo, Chul-Woo;Kim, Yang-Jin;Moon, Jung-Hoon;Choe, Young-Chan
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.105-130
    • /
    • 2008
  • Consumers of e-learning market differ from those of other markets in that they are replaced in a specific time scale. For example, e-learning contents aimed at highschool senior students cannot be consumed by a specific consumer over the designated period of time. Hence e-learning service providers need to attract new groups of students every year. Due to lack of information on products designed for continuously emerging consumers, the consumers face difficulties in making rational decisions in a short time period. Increased uncertainty of product purchase leads customers to herding behaviors to obtain information of the product from others and imitate them. Taking into consideration of these features of e-learning market, this study will focus on the online herding behavior in purchasing e-learning contents. There is no definite concept for e-learning. However, it is being discussed in a wide range of perspectives from educational engineering to management to e-business etc. Based upon the existing studies, we identify two main view-points regarding e-learning. The first defines e-learning as a concept that includes existing terminologies, such as CBT (Computer Based Training), WBT (Web Based Training), and IBT (Internet Based Training). In this view, e-learning utilizes IT in order to support professors and a part of or entire education systems. In the second perspective, e-learning is defined as the usage of Internet technology to deliver diverse intelligence and achievement enhancing solutions. In other words, only the educations that are done through the Internet and network can be classified as e-learning. We take the second definition of e-learning for our working definition. The main goal of this study is to investigate what factors affect consumer intention to purchase e-learning contents and to identify the differential impact of the factors between consumers with purchase experience and those without the experience. To accomplish the goal of this study, it focuses on herding behavior and perceived usefulness as antecedents to behavioral intention. The proposed research model in the study extends the Technology Acceptance Model by adding herding behavior and usability to take into account the unique characteristics of e-learning content market and e-learning systems use, respectively. The current study also includes consumer experience with e-learning content purchase because the previous experience is believed to affect purchasing intention when consumers buy experience goods or services. Previous studies on e-learning did not consider the characteristics of e-learning contents market and the differential impact of consumer experience on the relationship between the antecedents and behavioral intention, which is the target of this study. This study employs a survey method to empirically test the proposed research model. A survey questionnaire was developed and distributed to 629 informants. 528 responses were collected, which consist of potential customer group (n = 133) and experienced customer group (n = 395). The data were analyzed using PLS method, a structural equation modeling method. Overall, both herding behavior and perceived usefulness influence consumer intention to purchase e-learning contents. In detail, in the case of potential customer group, herding behavior has stronger effect on purchase intention than does perceived usefulness. However, in the case of shopping-experienced customer group, perceived usefulness has stronger effect than does herding behavior. In sum, the results of the analysis show that with regard to purchasing experience, perceived usefulness and herding behavior had differential effects upon the purchase of e-learning contents. As a follow-up analysis, the interaction effects of the number of purchase transaction and herding behavior/perceived usefulness on purchase intention were investigated. The results show that there are no interaction effects. This study contributes to the literature in a couple of ways. From a theoretical perspective, this study examined and showed evidence that the characteristics of e-learning market such as continuous renewal of consumers and thus high uncertainty and individual experiences are important factors to be considered when the purchase intention of e-learning content is studied. This study can be used as a basis for future studies on e-learning success. From a practical perspective, this study provides several important implications on what types of marketing strategies e-learning companies need to build. The bottom lines of these strategies include target group attraction, word-of-mouth management, enhancement of web site usability quality, etc. The limitations of this study are also discussed for future studies.

An Exploratory Study on the Status of and Demand for Higher Education Programs in Fashion in Myanmar (미얀마의 패션 고등교육 현황과 수요에 대한 탐색적 연구)

  • Kang, Min-Kyung;Jin, Byoungho Ellie;Cho, Ahra;Lee, Hyojeong;Lee, Jaeil;Lee, Yoon-Jung
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • This study examined the perceptions of Myanmar university students and professors regarding the status and necessity of higher education programs in fashion. Data were collected from professors in textile engineering at Yangon Technological University and Myanmar university students. Closed- and open-ended questions were asked either through interviews or by email. The responses were analyzed using keyword extraction and categorization, and descriptive statistics(closed questions). Generally, the professors perceived higher education, as well as the cultural industries including art and fashion, as important for Myanmar's social and economic development. According to the students interests in pursuing a degree in textile were limited, despite the high interest in fashion. Low wages in the apparel industry and lack of fashion degrees that meet the demand of students were cited as reasons. The demand was high for educational programs in fashion product development, fashion design, pattern-making, fashion marketing, branding, management, costume history, and cultural studies. Students expected to find their future career in textiles and clothing factories. Many students wanted to be hired by global fashion brands for higher salaries and training for advanced knowledge and technical skills. They perceived advanced fashion education programs will have various positive effects on Myanmar's national economy.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.