• Title/Summary/Keyword: Marker nucleotide

Search Result 331, Processing Time 0.036 seconds

Genetic Organization of ascB-dapE Internalin Cluster Serves as a Potential Marker for Listeria monocytogenes Sublineages IIA, IIB, and IIC

  • Chen, Jianshun;Fang, Chun;Zhu, Ningyu;Lv, Yonghui;Cheng, Changyong;Bei, Yijiang;Zheng, Tianlun;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.575-584
    • /
    • 2012
  • Listeria monocytogenes is an important foodborne pathogen that comprises four genetic lineages: I, II, III, and IV. Of these, lineage II is frequently recovered from foods and environments and responsible for the increasing incidence of human listeriosis. In this study, the phylogenetic structure of lineage II was determined through sequencing analysis of the ascB-dapE internalin cluster. Fifteen sequence types proposed by multilocus sequence typing based on nine housekeeping genes were grouped into three distinct sublineages, IIA, IIB, and IIC. Organization of the ascB-dapE internalin cluster could serve as a molecular marker for these sublineages, with inlGHE, inlGC2DE, and inlC2DE for IIA, IIB, and IIC, respectively. These sublineages displayed specific genetic and phenotypic characteristics. IIA and IIC showed a higher frequency of recombination (${\rho}/{\theta}$). However, recombination events had greater effect (r/m) on IIB, leading to its high nucleotide diversity. Moreover, IIA and IIB harbored a wider range of internalin and stress-response genes, and possessed higher nisin tolerance, whereas IIC contained the largest portion of low-virulent strains owing to premature stop codons in inlA. The results of this study indicate that IIA, IIB, and IIC might occupy different ecological niches, and IIB might have a better adaptation to a broad range of environmental niches.

Cannabinol Synthase Gene Based Molecular Markers for Identification of Drug and Fiber Type Cannabis sativa (마약성과 비마약성 대마 품종의 식별을 위한 카나비놀 생합성 유전자 분석법)

  • Park, Hyun-Seung;Oh, Hye Hyun;Kim, Sungmin;Park, Jee Young;Kim, Jintae;Shim, Hyeonah;Yang, Tae-Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • Cannabis sativa is an important industrial plant utilized to produce fiber, oil, and medicinal ingredients. A chemotype of cannabis is divided into "Drug type" with predominance of tetrahydrocannabinolic acid (THCA) and "Fiber type" with cannabidiolic acid (CBDA). To develop molecular markers for the discrimination of these two types, nucleotide sequences of THCA synthase and CBDA synthase as well as their pseudogenes were retrieved from the recently published cannabis genome in chromosome scale. Gene-specific SNPs were discovered by multiple alignment of these sequences, and 2 dominant marker sets from each gene were designed for selective amplification. Our markers successfully identified "Drug type" and "Fiber type" cannabis plants as well as forensic samples including processed materials. Our molecular markers will provide a fast and efficient system for molecular-based identification of the cannabis plant.

Recurrent parent genome (RPG) recovery analysis in a marker-assisted backcross breeding based on the genotyping-by-sequencing in tomato (Solanum lycopersicum L.) (토마토 MABC 육종에서 GBS(genotyping-by-sequencing)에 의한 RPG(recurrent parent genome) 회복률 분석)

  • Kim, Jong Hee;Jung, Yu Jin;Seo, Hoon Kyo;Kim, Myong-Kwon;Nou, Ill-Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • Marker-assisted backcrossing (MABC) is useful for selecting an offspring with a highly recovered genetic background for a recurrent parent at early generation to various crops. Moreover, marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and it accelerates recurrent parent genome (RPG) recovery. In this study, we were employed to incorporate rin gene(s) from the donor parent T13-1084, into the genetic background of HK13-1151, a popular high-yielding tomato elite inbred line that is a pink color fruit, in order to develop a rin HK13-1084 improved line. The recurrent parent genome recovery was analyzed in early generations of backcrossing using SNP markers obtained from genotyping-by-sequencing analysis. From the $BC_1F_1$ and $BC_2F_1$ plants, 3,086 and 4868 polymorphic SNP markers were obtained via GBS analysis, respectively. These markers were present in all twelve chromosomes. The background analysis revealed that the extent of RPG recovery ranged from 56.7% to 84.5% and from 87.8% to 97.8% in $BC_1F_1$ and $BC_2F_1$ generations, respectively. In this study, No 5-1 with 97.8% RPG recovery rate among $BC_2F_1$ plants was similar to HK13-1151 strain in the fruit shape. Therefore, the selected plants were fixed in $BC_2F_2$ generation through selfing. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in the backcross generations. MABC can greatly reduce breeding time as compared to the conventional backcross breeding. For instance, MABC approach greatly shortened breeding time in tomato.

Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase) in rat cortical neurons in culture (배양한 흰주 대뇌세포에서 2,3,7,8-tetrachlorodibenzo-p-dioxin 이 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase)의 표현에 미치는 영향)

  • Cho, Sun-Jung;Jung, Jae-Seob;Kim, Deock-Kyu;Shin, Seung-Chul;Go, Ok;Jung, Yong-Wook;Ko, Bok-Hyun;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.346-353
    • /
    • 2001
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) a prototype of the highly toxid halogenated arylhydrocarbons, bioaccumulates in the food chain and induces a complex spectrum of pathological responses. However, its effect on the nerve system is relatively not well studied. In this study we evaluated TCDDs cytotoxicity on the cortical cell and investigated its effect on the expression 2,3-cyclic nucleotide 3-phosphodiesterase(CNPase), a marker for oilgodendrocytes, The survival rates of 4 DIV cortical cells, that are dissociated from E18 rat cortex and maintained in the presence of TCDD, were 88.8, 83.6, 78.5, and 78.6%(5,10, 20 and 50 nM, respectively) where the reduction in 20 and 50mM TCDD were statistically very significant(p<0.01). Imunocytochemistry of cultured cells revealed that the intensities of immunostaining with an anti-CNP1&2 antibody depended on the concentrations of the toxin. Immunoblot analysis also showed differential expression of CNP1 and CNP2 in the presence of TCDD; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 in the presence if TDCC; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 fluctuated with the TCDD concentration. These results indicated that CNP1 and 2 are differentially regulated by TCDD, implying the functions of oligodendrocytes are modulated by the toxin.

  • PDF

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle

Association of Single Nucleotide Polymorphism rs1053004 in Signal Transducer and Activator of Transcription 3 (STAT3) with Susceptibility to Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B

  • Chanthra, Nawin;Payungporn, Sunchai;Chuaypen, Natthaya;Pinjaroen, Nutcha;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5069-5073
    • /
    • 2015
  • The single nucleotide polymorphism (SNP) rs1053004 in Signal transducer and activator of transcription 3 (STAT3) was recently reported to be associated with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) in a Chinese cohort. This study was aimed at investigating whether the SNP might also contribute to HCC susceptibility in the Thai population. Study subjects were enrolled and divided into 3 groups including CHB-related HCC (n=211), CHB without HCC (n=233) and healthy controls (n=206). The SNP was genotyped using allelic discrimination assays based on TaqMan real-time PCR. Data analysis revealed that the distribution of different genotypes was in Hardy-Weinberg equilibrium (P>0.05). The frequencies of allele T (major allele) in HCC patients, CHB patients and healthy controls were 51.4%, 58.6% and 61.4%, respectively, whereas the frequencies of C allele (minor allele) were 48.6%, 41.4% and 38.6%. The C allele frequency was higher in HCC when compared with CHB patients (odds ratio (OR)=1.34, 95% confidence interval (CI)=1.02-1.74, P=0.032). The genotype of SNP rs1053004 (CC versus TT+TC) was significantly associated with an increased risk when compared with CHB patients (OR=1.83, 95% CI=1.13-2.99, P=0.015). In addition, we observed a similar trend of association when comparing HCC patients with healthy controls (OR=1.77, 95% CI=1.07-2.93, P=0.025) and all controls (OR=1.81, 95% CI=1.19-2.74, P=0.005). These findings suggest that the SNP rs1053004 in STAT3 might contribute to HCC susceptibility and could be used as a genetic marker for HCC in the Thai population.

Association of Single Nucleotide Polymorphism (SNP) in the PGK 2 Gene with Growth Traits in Pigs (돼지 PGK 2 유전자의 단일염기다형성 및 성장 형질과의 연관성 구명)

  • Jang, Hong-Chul;Kim, Sang-Wook;Lim, Da-Jeong;Kim, Jae-Young;Cho, Kyu-Ho;Kim, Myung-Jick;Lee, Ji-Woong;Choi, Bong-Hwan;Kim, Tae-Hun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • The purpose of this study was to analyse of association between growth traits and single nucleotide polymorphisms (SNPs) polymorphism of phosphoglycerate kinase 2 (PGK 2) gene in pigs. The birth weight of piglet influences on weaning weight and survival rate that are import economic traits in pig industry. Also, these growth traits are representative factor to decrease a period getting to marketing weight as well as growth rate in pig. The PGK 2 is an isozyme that catalyzes the first ATP-generating step in the glycolytic pathwayand important enzyme related with energy metabolism. Twenty of SNPs were discoveredby genome structure analysis that compares the sequence on promoter and transcription region of PGK 2 gene in porcine chromosome 7. An association between PGK 2 SNPs and growth traits was analyzed in $F_2$ reciprocal-crossbred population between korean native pig (KNP) and Landrace. Association analysis indicated that polymorphism of the PGK 2 gene promoter region has significant effects on weight at birth (p<0.01) and weight at 3 weeks of age (p<0.0001). These results suggest that PGK 2 gene polymorphism was associated with energy metabolism and physiological function of growth in pig.

A Novel Single Nucleotide Polymorphism of the Leptin Receptor Gene Associated with Backfat Thickness in Duroc Pigs (두록 돼지의 등지방두께와 연관된 렙틴수용체 유전자의 신규 SNP 마커)

  • Lee, Kyung-Tai;Lee, Hae-Young;Choi, Bong-Hwan;Kim, Jong-Joo;Kim, Tae-Hun
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Fatness is one of the most important economic traits in pigs. The leptin receptor (LEPR) gene may be a potential candidate for the fatness quantitative trait locus (QTL) on porcine chromosome 6, due to its position and physiological role. Thus, this study was carried out to evaluate the associations between structural variants in the LEPR gene and economic traits in pigs. We obtained an approximately 114-kb sequence containing the complete genomic DNA of the porcine LEPR gene, using shotgun sequencing of a bacterial artificial chromosome clone. We report the complete genomic structure of the porcine LEPR gene. Dozens of transcription factor-binding sites were found in the 1.2 kb upstream region from the transcription start point. An association study was performed with 550 Duroc pigs for 24 single-nucleotide polymorphisms (SNPs), including 6 SNPs within exons and 18 SNPs within the putative 5‘ regulatory region of the porcine LEPR gene. Among them, one SNP (−790C/G) was significantly associated with backfat thickness and lean meat percentage, whereas the others, including two SNPs with missense polymorphisms, had no effect on any phenotype. These results suggest that SNP −790C/G may be a useful marker for genetic improvements of fatness and leanness in Duroc pigs.

Single nucleotide polymorphism of GSTP1 and pathological complete response in locally advanced rectal cancer patients treated with neoadjuvant concomitant radiochemotherapy

  • Nicosia, Luca;Gentile, Giovanna;Reverberi, Chiara;Minniti, Giuseppe;Valeriani, Maurizio;de Sanctis, Vitaliana;Marinelli, Luca;Cipolla, Fabiola;de Luca, Ottavia;Simmaco, Maurizio;Osti, Mattia F.
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.218-226
    • /
    • 2018
  • Purpose: Standard treatment for locally advanced rectal cancer consists of neoadjuvant radiochemotherapy with concomitant fluoropyrimidine or oxaliplatin and surgery with curative intent. Pathological complete response has shown to be predictive for better outcome and survival; nevertheless there are no biological or genetic factors predictive for response to treatment. We explored the correlation between the single nucleotide polymorphisms (SNPs) GSTP1 (A313G) and XRCC1 (G28152A), and the pathological complete response and survival after neoadjuvant radiochemotherapy in locally advanced rectal cancer patients. Materials and Methods: Genotypes GSTP1 (A313G) and XRCC1 (G28152A) were determined by pyrosequencing technology in 80 patients affected by locally advanced rectal cancer. Results: The overall rate of pathological complete response in our study population was 18.75%. Patients homozygous AA for GSTP1 (A313G) presented a rate of pathological complete response of 26.6% as compared to 8.5% of the AG+GG population (p = 0.04). The heterozygous comparison (AA vs. AG) showed a significant difference in the rate of pathological complete response (26.6% vs. 6.8%; p = 0.034). GSTP1 AA+AG patients presented a 5- and 8-year cancer-specific survival longer than GSTP1 GG patients (87.7% and 83.3% vs. 44.4% and 44.4%, respectively) (p = 0.014). Overall survival showed only a trend toward significance in favor of the haplotypes GSTP1 AA+AG. No significant correlations were found for XRCC1 (G28152A). Conclusion: Our results suggest that GSTP1 (A313G) may predict a higher rate of pathological complete response after neoadjuvant radiochemotherapy and a better outcome, and should be considered in a more extensive analysis with the aim of personalization of radiation treatment.

A Y-linked SNP in SRY Gene Differentiates Chinese Indigenous Swamp Buffalo and Introduced River Buffalo

  • Zhang, Yi;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1240-1244
    • /
    • 2006
  • The complete coding region sequence of the SRY gene in Chinese swamp buffalo was determined by PCR product sequencing. Comparison of swamp and river buffalo SRY gene sequences revealed a single nucleotide polymorphism (SNP, C/G) at the 202 bp site of the coding region. Further, a total of 124 male domestic buffaloes were genotyped at this SNP site using the PCR-SSCP method, and it was found that all Chinese indigenous swamp buffaloes had a guanine (G) at this site, while introduced river buffaloes and crossbred buffaloes showed a cytosine (C). Our findings suggested that this Y-linked SNP displayed type-specific alleles differentiating swamp and river buffaloes, and could be used as an effective marker to detect crossbreeding of swamp buffaloes with introduced river buffaloes in native buffalo populations, and thereby assess genetic diversity status and make proper conservation decisions for indigenous swamp buffaloes. In addition, this SNP can be potentially applied in the study of Asian water buffalo phylogeny from a male perspective.