• Title/Summary/Keyword: Maritime Rainfall

Search Result 38, Processing Time 0.031 seconds

Stability of unsaturated infinite slope under rainfall-induced infiltration (강우침투시 불포화 무한사면의 안정성 평가)

  • Song, Young-Suk;Hwang, Woong-Ki;Lee, Nam-Woo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.71-78
    • /
    • 2010
  • The stability analysis of unsaturated infinite slope under rainfall-induced infiltration condition was performed using the generalized effective stress that unifies both saturated and unsaturated condition recently proposed by Lu and Likos(2004, 2006). The Soil-Water Characteristic Curve (SWCC) of the sand with the relative density of 75% was first measured for both drying and wetting processes. The Hydraulic Conductivity Function (HCF) and Suction Stress Characteristic Curve (SSCC) were subsequently estimated. Also, under the rainfall-induced infiltration condition transient seepage analysis of unsaturated infinite slope was performed using the finite element program, SEEP/W. Based on these results, the stability of unsaturated infinite slope under rainfall-induced infiltration condition was examined considering the suction stress. According to the results, the negative pore water pressure and water content within the soil changed with time due to the infiltration. Also, the variation of those caused the variation of suction stress and then the factor of safety of slope changed consequently during the rainfall period.

  • PDF

A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory

  • Fan, Yingfang;Hu, Zhiqiang;Luan, Haiyang;Wang, Dawei;Chen, An
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.35-49
    • /
    • 2014
  • This paper studies the behaviour of deteriorated reinforced concrete (RC) beams attacked by various forms of simulated acid rain. An artificial rainfall simulator was firstly designed and evaluated. Eleven RC beams ($120mm{\times}200mm{\times}1800mm$) were then constructed in the laboratory. Among them, one was acting as a reference beam and the others were subjected to three accelerated corrosion methods, including immersion, wetting-drying, and artificial rainfall methods, to simulate the attack of real acid rain. Acid solutions with pH levels of 1.5 and 2.5 were considered. Next, ultrasonic, scanning electron microscopy (SEM), dynamic, and three-point bending tests were performed to investigate the mechanical properties of concrete and flexural behaviour of the RC beams. It can be concluded that the designed artificial simulator can be effectively used to simulate the real acid rainfall. Both the immersion and wetting-drying methods magnify the effects of the real acid rainfall on the RC beams.

Distribution of Trace Metals in Sediments of Mokpo Coastal Area after a Strong Rainfall

  • Kim Do Hee;Sin Yong Sik
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.302-307
    • /
    • 2002
  • The characteristics of trace metals were investigated in the sediments of the Mokpo coastal area, southwestern coast of Korea. Surface sediments were collected in September 3, 2002 after a strong rain event. The sampling sites were categorized into the inner and outer harbour based on salinity distribution and difference of trace metal concentration was evidence between these two zones. The enrichment factor (E' F) of Zn and Cr were high at the mouth of Mokpo Harbour and $E \cdot F$ of Cu was high at the east-south of Dali Island. One hundred percent of Mn and Pb samples and $40\%$ of Zn samples had E' F higher than 1 suggesting that they are accumulated in the entire outer of Mokpo Harbour. Trace metals appeared to be accumulated in the inner harbour by input of sediments in the discharged freshwater from Young-San River during strong rainfall whereas they were influenced by natural sedimentation and human activities in part.

Determination of Failure Mechanism of Slope Calibration Chamber Tests Using Rainfall Simulation (I) (인공강우에 의한 모형토조사면의 붕괴메카니즘 결정 (I))

  • Jeong, Ji-Su;Jung, Chun-Gyo;Lee, Jong-In;Lee, Seong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study analyzes the determination of slope failure model due to changes in ground condition followed by heavy rainfall. With a simulated rainfall system, the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure, and moisture content, considering rainfall duration and permeability. As a result of the experiment, under the persistent precipitation of 50mm/h, pore-water pressure of weathered granite soil started increasing from the upper position of the slope, and then the pressure increased in middle and bottom portion of it in timely manner. In case of the pore-water pressure of the standard soil, the pressure increased from the middle and bottom portion, and the cause of the different order is suspected to be the difference in permeability between the standard soil and the weathered granite soil. As an outcome, though the result may vary by each foundation, there exists a danger of slope failure not only when the cumulative rainfall is more than 120 mm but also when the saturation level amounts to 60~75%.

Field Observation for the effluent of sediment and nutrient on the Coastal Area (연안역의 토사 및 영양염류 유출에 관한 현지관측)

  • Lee Guk-Jin;Kim In-Soo;Ikeda Shunsuke
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.113-118
    • /
    • 2005
  • We studied field observation and countermeasure about the effluent of sediment and nutrient materials on the Okinawa Ishigaki Coast according rainy season though this observation, we found out the analysis of outflow topography, intensity of rainfall and effects on the tide, the property of effluent materials ete. The sediment and nutrient concentration of the Okinawa Ishigaki coast are different on the regional sites according to vary with time variation of intensity of rainfall and the ebb and flow. We could confirm to vary with utilized waterways land area and distribution of surrounding vegetation.

A Case Study of Heavy Rainfall by A Developed Convective System over Gangneung on 6 August 2018 (2018년 8월 6일 발달한 대류계에 의해 발생한 강릉지역의 집중호우 사례 연구)

  • Park, Sung-Kyu;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.125-139
    • /
    • 2020
  • On 6 August 2018, heavy rainfall of daily precipitation of more than 200 mm occurred in the Yeong-dong coastal area, and especially, 1-hour precipitation of 93 mm (0251~0351 LST (local standard time) 6 August) at Gangneung station, ranked second in the history of meteorological survey of the station. In this study, this heavy rainfall case over the Gangneung area would be studied to investigate the process in which the heavy rainfall occurred. A developed ridge moved toward the Yeong-dong coastal area from the Maritime Province in Russia. The approaching of the ridge led to the northeasterly cold wind over the coastal region, causing the collision between the incoming northeasterly cold wind, and the humid and warm (convectively unstable) air located over the Yeong-dong area. This collision led to a strong convergence (maximum -206 × 10-5 s-1) at 925 hPa level over the vicinity of Gangneung at 0300 LST 6 August, resulting updraft of up to about 4.4 m s-1 at 700 hPa level over the area. This strong updraft forced to lift rapidly the convectively unstable, warm and humid air layer, located over the vicinity of Gangneung, leading to the heavy rainfall (1-hour precipitation of 93 mm) over the area.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Bayesian Spatial Modeling of Precipitation Data

  • Heo, Tae-Young;Park, Man-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.425-433
    • /
    • 2009
  • Spatial models suitable for describing the evolving random fields in climate and environmental systems have been developed by many researchers. In general, rainfall in South Korea is highly variable in intensity and amount across space. This study characterizes the monthly and regional variation of rainfall fields using the spatial modeling. The main objective of this research is spatial prediction with the Bayesian hierarchical modeling (kriging) in order to further our understanding of water resources over space. We use the Bayesian approach in order to estimate the parameters and produce more reliable prediction. The Bayesian kriging also provides a promising solution for analyzing and predicting rainfall data.

Analysis of Saturation Depth by Rainfall Intensity and Soil Conditions on Slope (비탈면 침투해석시 지반 및 강우조건에 의한 포화깊이 분석)

  • Lee, Seung-Woo;Jang, Bhum-Soo;Kim, Sung-Ho;Heo, In-Young;Hong, Suk-Pyo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • Climate change, according to the country to increase locality of slope collapse of heavy disaster, such as increasing the likelihood and prior in order to prevent these disasters, "Slope construction design standards (Ministry of Land, 2011)," is prescribed in the relevant guidelines. In recent years, guidelines Slope Stability Analysis of the existing methods when the rainy season infiltration of rainfall, taking into account have been revised to perform more realistic. In this study, according these trends to the analysis of saturation depth by rainfall intensity and soil conditions. Results as a whole, the larger the saturated hydraulic conductivity and depth of rainfall intensity also showed a tendency to rise in proportion but MH, CL did not occur in the saturation region. Analysis of antecedent rainfall case also reflects an overall increase of depth in the saturated, rainfall in many cases is less than the growth rate was higher in the saturation region.

The Time of Concentration Considering the Rainfall Intensity (강우강도를 고려한 도달시간 산정식)

  • Yoo, Dong-Hoon;Kim, Jong-Hee;Lee, Min-Ho;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.591-599
    • /
    • 2011
  • The rainfall intensity is a very essential factor which must be considered for the estimation of the time of concentration. The rainfall intensity, however, is not fully considered for the estimation of the time of concentration due to the complexity of the equation of rainfall intensity. To increase accuracy of the time of concentration, the rainfall intensity and return period were included in the derivation of the time of concentration equations in this study. The equation of rainfall intensity is Sherman type and the regional coefficients were estimated from the rainfall intensity readings on the probability rainfall maps published by Ministry of Construction and Transportation. For simple calculation of rainfall intensities, the contour maps were drawn that expresses coefficients of the Sherman type equation. By substituting the Sherman type equation of rainfall intensity in the equation of the time of concentration, a relatively simple equation with no repeated calculation has been derived. From the study results, in order to include the influence of the rainfall intensity for the estimation of the time of concentration, it is highly recommended that the Sherman type equation of rainfall intensity be used. When one knows a location in Korea and a return period, he can estimate the coefficients of the rainfall intensity equation and calculate the time of concentration considering the rainfall intensity.