• Title/Summary/Keyword: Marine-ecosystem index

Search Result 66, Processing Time 0.025 seconds

A study on the variation of the Korean marine ecosystem through biodiversity attributes (생물다양성 특성 분석을 통한 우리나라 주변 해양생태계 변화 연구)

  • Jong Hee LEE;Young Il SEO;Sang Chul YOON;Heejoong KANG;Ji-Hoon CHOI;Min-Je CHOI;Jinwoo GIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.315-327
    • /
    • 2023
  • In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.

A Prelimiary Study for Marine Ecosystem Health Assessment Using the Planktonic Organism in Jinhae Bay (진해만에서 부유생물을 이용한 해양생태계 건강성평가 예비조사)

  • Baek, Seung-Ho;Choi, Hyun-Woo;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.125-132
    • /
    • 2010
  • In order to assess the effect of pollution on marine ecosystem, we examined the plankton health assessment at 16 stations during summer season in Jinhae Bay. The organic and inorganic pollutant sources (dissolved organic carbon; DOC, chemical oxygen demand; COD and Chlorophyll a; Chl.a), including planktonic orangism such as enterobacteria Escherichia coli, heterotrophic bacteria (HB), autotrophic nano-flagellates (ANF), heterotrophic nano flagellates (HNF), ciliate and harmful algal bloom species (HABs) were used to characterize marine ecosystem health assessment. Of these, we tentatively selected those items Chl.a, HABs, HB and E. coli for plankton health index (PHI). Also, the scoring criteria for each metric were based on a statistical analysis and then, the grades are rated on four levels. As a result, the ecological assessment of these data reveals that PHI in Jinhae Bay is rated as "Good or fair" for overall conditions. The present study suggests that the PHI might be considered as one of important management tool to assess marine ecosystem health of Jinhae Bay.

Application on Multi-biomarker Assessment in Environmental Health Status Monitoring of Coastal System (해역 건강도 평가를 위한 다매체 바이오마커 적용)

  • Jung, Jee-Hyun;Ryu, Tae-Kwon;Lee, Taek-Kyun
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2008
  • Application of biomarkers for assessing marine environmental health risk is a relatively new field. According to the National Research Council and the World Health Organization, biomarkers can be divided into three classes: biomarkers of exposure, biomarkers of effect, and biomarkers of susceptibility. In order to assess exposure to or effect of the environmental pollutants on marine ecosystem, the following set of biomarkers can be examined: detoxification, oxidative stress, biotransformation products, stress responses, apoptosis, physiological metabolisms, neuromuscular responses, reproductions, steroid hormones, antioxidants, genetic modifications. Since early 1990s, several biomarker research groups have developed health indices of marine organisms to be used for assessing the state of the marine environment. Biomarker indices can be used to interpret data obtained from monitoring biological effects. In this review, we will summarize Health assessment Index, Biomarker Index, Bioeffect Assessment Index and Generalized Linear Model. Measurements of biomarker responses and development of biomarker index in marine organisms from contaminated sites offer great a lot of information, which can be used in environmental monitoring programs, designed for various aspects of ecosystem risk assessment.

Fish Reproduction Potential Indices in the Coastal and Offshore Ecosystems in Korea (한국 연근해 생태계의 잠재 재생산 지수)

  • Lee, Sun-Kil;Lee, Jae-Bong;Zhang, Chang-Ik;Lee, Dong-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • We developed an ecosystem indicator (EI) for the coastal and offshore areas of Korean waters. One of the major scientific challenges of this undertaking was to translate broad policy statements for ecosystem-based fisheries management (EBFM) into practical terms. Fish reproduction potential (FRP) was defined as an EI to describe the reproductive probability of adult fisheries resources in Korean waters. The FRP was estimated as the ratio of adult fish composition to total catch, catches (in metric tons) by species and by ecosystem, and fishery effort (in horse power per metric ton). The FRP indices of the East/japan Sea Ecosystem (EJSE), Yellow Sea Ecosystem (YSE), and East China Sea Ecosystem (ECSE) began to decrease after the mid-1980s, and the current indices have decreased further, at 0.63 (EJSE), 1.22 (YSE), and 0.68 (ECSE) index points compared to the indices of 1975, when similar catch amounts were recorded. Lower FRPs in the Korean marine ecosystems were the result of higher proportion of immature fisheries resources in the total catch. Because this kind of ecosystem-level indicator is thought to reflect scientific approaches to EBFM and to provide an important tool for assessing the current status of marine ecosystems with respect to both quantity and quality, more EIs should be developed for Korean waters.

A study on the ecosystem-based fisheries assessment by quality analysis in Jeonnam marine ranching ecosystem (정량적 분석에 의한 전남바다목장의 생태계 기반 어업평가)

  • Park, Hee Won;Choi, Kwang Ho;Zhang, Chang Ik;Seo, Young Il;Kim, Heeyong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • In the application of the ecosystem-based fisheries assessment Jeonnam marine ranching ecosystem, two fisheries, funnel fishery and trap fishery, were selected as target fisheries. Black seabream, Acanthopagru schlegelii, rock bream, Sebastes inermis, gray mullet, Mugil cephalus, were selected as target species for the funnel fishery, and conger eel, Conger myriaster, was target species for the trap fishery. For assessing indicators of four management objectives, that is the maintenance of sustainability, biodiversity, habitat quality and socio-economic benefits, indicators were selected considering the availability of data, which were 5 indicators for sustainability, 3 indicators for biodiversity, 4 indicators for habitat, 2 indicators for socio-economic benefit. The Objective risk indices for sustainability and biodiversity of two fisheries were estimated at yellow zone, medium risk level. The objective risk indices for habitat and socio-economic benefit were estimated at green zone, safe level. The species risk indices (SRI) were estimated at yellow zone. The fishery risk indices (FRIs) were estimated at 1.143 and 1.400 for funnel net fishery and trap fishery, respectively. Finally the ecosystem risk index estimated at 1.184.

Analysis of Long-term Changes for Fisheries Production and Marine-Ecosystem Index in Jinhae Bay Considering Climate Change (진해만의 수산생산량과 해양생태계 지표의 장기 변동 및 기후변화 요인 분석)

  • Woo-Hee Cho;Kyunghoi Kim;In-Cheol Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 2024
  • As an important fishing ground in the southern coast of Korea, Jinhae Bay is characterized by a high level of fisheries production. However, its marine-ecosystem has shifted owing to environmental changes such as industrial development and high water temperatures over the decades. This study analyzes the fisheries production, discards, mean trophic level, and fishing-in-balance index using annual fishing data from five regions surrounding Jinhae Bay for the period 2005-2022, as well as using additional forecasting trends by 2027 using ARIMA (Auto Regressive Intergrated Moving Average). The results shows, that the production in Goseong will decrease continuously by 2027, as compared with that in other areas. Additionally, byproduct management is considered necessary in Tongyeong. For the marine-ecosystem index, Tongyeong indicates stable catch ratio of large fish species and a fishing-in-balance exceeding 0. Finally, the annual catch variation for six pelagic fish species in Jinhae Bay by 2060 is estimated based on the IPCC climate-change scenario, in which the recent low level that decreased to approximately 20 thousand ton in early 2020 is projected to recover to approximately 40 thousand ton in the 2020s and 2040s, followed by an incremental decline by 2060.

Stock assessment by ecosystem risk analysis of large purse seine fishery in the southern sea of Korea (한국 남해안 대형선망어업의 생태계 위험도 분석에 의한 자원평가 연구)

  • Seo, Young-Il;Zhang, Chang-Ik;Lee, Jae-Bong;Cha, Hyung-Kee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.369-389
    • /
    • 2011
  • Changes in ecosystem risks were evaluated using the ecosystem-based fisheries assessment (EBFA) approach of Zhang et al. (2009, 2010) and the comprehensive ecosystem-based fisheries management (EBFM) plan was made for the southern sea of Korea in this study. The risk assessment of the southern sea ecosystem was conducted by establishing ecosystem management objectives and by estimating risk scores (RS) for indicators. To conduct this analysis a number of indicators and their reference points for assessing these risk scores were developed in this study. The number of indicators in the risk analysis was 28 for the quantitative tier 1 analysis and 30 for the qualitative tier 2 analysis. The objective risk index (ORI), species risk index (SRI) and fisheries risk index (FRI) were calculated from the risk scores. Comparing the past (1988) and the current (2008) status of fisheries resources, management implications were discussed. The fishery risk index (FRI) of large purse seine fishery in the southern sea of Korea decreased substantially from 0.972 in 1988 to 0.883 in 2008, and improvement in the management of fisheries operated in the southern sea of Korea.

A Brief Review of Approaches Using Planktonic Organisms to Assess Marine Ecosystem Health (부유생물을 이용한 해양생태계 건강성 평가)

  • Kim, Young-Ok;Choi, Hyun-Woo;Jang, Min-Chul;Jang, Pung-Kuk;Lee, Won-Je;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • Plankton communities have close relationships with environmental changes in water columns. Thus, the use of plankton as a biological tool for assessing the marine ecosystem health may be effective. Major issue regarding coastal pollution has been usually recognized as phytoplankton blooms or red tides caused by the eutrophication, an increase in concentration of inorganic nutrients such as nitrogen and phosphorus. However, in order to understand the effects of the overall pollution on marine ecosystem, the organic pollutants as well as the inorganic nutrients should be also considered. For understanding the effects of the organic pollution, among the planktonic organisms, heterotrophic bacteria, heterotrophic flagellates and ciliates should be investigated. Generally, there are three approaches for assessing the marine ecosystem health using the plankton taxa or plankton communities. The first one is a community-based approach such as diversity index and chlorophyll a concentration which are common in analysis of the plankton communities. The second is an indiviual-based approach which is to monitor the pollution indicative species. This approach needs one's ability to identify the plankton to species level. The last approach is a bioassay of toxicity, which can be applied to the plankton. A pilot study in Masan Bay was conducted to assess the effects of the inorganic and organic pollution. In this article, a new approach using plankton communities was tentatively presented as a biological tool for assessing the ecosystem health of Masan Bay.

Implications for Coastal Ecosystem Health Assessments and Their Applications in Korea (연안해역 생태계 건강성 평가의 의미와 국내 적용 방향)

  • Kim, Young-Ok;Shim, Won-Joon;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.319-326
    • /
    • 2007
  • Coastal marine ecosystems continue to suffer unrelenting pressures from human population growth, increased development, and climate change. Moreover, these systems' capacity for self-repair is declining with such increases in anthropogenic production of various pollutants. What is the present health status or condition of the coastal ecosystem? If our coastal areas are unhealthy, which conditions are considered serious? To answer such questions, the United States, Canada, and Australia are currently assessing coastal ecosystem health using systematic monitoring programs as well as identifying and implementing management plans to improve the health of degraded coastal ecosystems. To evaluate marine environments, Korea is currently using a limited number of factors to estimate water quality. In fact, we are ill-prepared for assessing coastal ecosystem health because no biologically specific criteria are in place to measure the responses to various pollutants. We should select ecosystem-specific indicators from physicochemical stressors and evaluate the subsequent biological responses within each ecosystem. Furthermore, a set of practical indicators should be generated by considering the characteristics and uses of a local coastal area and the key issues at hand. The values of indicators should be presented as indices that allow understanding by the general public as well as by practitioners, policy makers, environmental managers and other stakeholders.

Comparison of the Reproductive Characteristics of Sweetfish Plecoglossus altivelis in the Main Streams of Jeju Island (제주도 주요 하천에 서식하는 은어(Plecoglossus altivelis)의 번식 특성 비교)

  • Kim, Han-Jun;Park, Chang-Beom;Lee, Young-Don;Choi, Young-Ung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.496-510
    • /
    • 2019
  • We investigated the reproductive characteristics of the sweetfish Plecoglossus altivelis, including changes in the gonadosomatic index (GSI), frequency of gonad developmental stages, and abundance of drifting larvae, in three streams (Gangjeong, Yeonoi, and Ongpo) on Jeju Island from May 2004 to December 2005. The GSI values of female P. altivelis in all Jeju streams began to increase in September and reached a maximum in October and November. Peak GSI values in males occurred in Gangjeong from October to November, in Yeonoi from November to January, and in Ongpo from September to October. The gonadal development of P. altivelis was classified into four stages: growth (March to October), maturity (September to December in females; July to December in males), spawning (September to January), and degeneration (October to March in females; after November in males). Drifting larvae were collected from October to January. These results suggest that the main spawning activity of P. altivelis in Jeju streams occurs from October to November. The information about the reproductive characteristics of P. altivelis obtained in this study is critical to fishery management for this species.