• Title/Summary/Keyword: Marine pipelines

Search Result 41, Processing Time 0.023 seconds

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

A Review of the Expansion Behavior of Marine Pipelines

  • Choi, Han-Suk;Lee, Seung-Keon;Chun, Eun-Jee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • A camprehensive review of the expansion behavior of marine pipelines due to thermal and pressure change is presented based on research work over the last 10 years. The review is organized into five main sections, namely free expansion with uniform temperature, free expansion with temperature gradient, expansion with end restraints, expansion of pipe-in-pipe system, and lateral deviation (snaking). Based on the accumulated knowledge of the interactions between the soil and pipeline behavior, a whole pipeline system can be modeled by an accurate finite element method (FEM). This methodology requires a comprehensive understanding and engineering verification of the expansion behavior of marine pipelines.

Design of Static Free Span for the Safety of Subsea Pipelines (해저 파이프라인의 안정성을 위한 정적 자유경간의 설계)

  • 박한일;김창현
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 1996
  • Subsea pipelines are exposed to several potential risks of damage due to wave, soil instability and other hazards. Structural failure of the steel pipelines will result in serious consequences such as release of transported hydrocarbons, pollution to the ocean environment and heavy costs due to repair. This paper examines the safety of subsea pipelines with free span which is one of high potential damages. The variation of an allowable length of static free span is examined for different boundary conditions and is given in a curve which is useful for the dsign of the subsea pipeline with a free span.

  • PDF

A shell-dynamics model for marine pipelines of large suspended length

  • Katifeoglou, Stefanos A.;Chatjigeorgiou, Ioannis K.
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.301-318
    • /
    • 2015
  • The present investigations introduce the shell-finite element discretization for the dynamics of slender marine pipelines. A long catenary pipeline, corresponding to a particular Steel Catenary Riser (SCR), is investigated under long-standing cyclic loading. The long structure is divided into smaller tubular parts which are discretized with 8-node planar shell elements. The transient analysis of each part is carried out by the implicit time integration scheme, within a Finite Elements (FE) solver. The time varying external loads and boundary conditions on each part are the results of a prior solution of an integrated line-dynamics model. The celebrated FE approximation can produce a more detailed stress distribution along the structural surface than the simplistic "line-dynamics" approach.

Effect of Geometry Variation on Plastic Collapse of Marine Pipeline (해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과)

  • Baek, Jong-Hyun;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • The marine pipelines laid in deep waters were evaluated to verify the resistance on the plastic collapse to heavy ambient external pressure due to hydrostatic pressure. In this study, the plastic collapse behavior of the marine pipe subjected to hydrostatic pressure was evaluated with the ovality and ratio of diameter to thickness in FE analyses. A parametric study was shown that the internal pressure increased the plastic collapse depth by increasing of the resistance to the plastic collapse. It was also shown that the collapse depth of the pipeline having a local ovality was deeper than that of the pipeline having a global ovality. Finally, the plastic collapse depth decreased when either the ratio of diameter to thickness or the ovality increased.

Numerical Study for the Influence of Environment Temperature on Offshore Arctic Pipeline and Impingement Erosion Analysis by using Thermal Flow Simulation (극지 해양 파이프라인 내부 유체의 온도별 영향 및 내부 충돌침식 분석)

  • Jo, Chul Hee;Lee, Jun-Ho;Jang, Choon-Man;Heang, Su-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2015
  • This paper describes thermal flow characteristic in various pipelines: straight pipeline and curved pipeline. In the Arctic and ocean area, pipelines are exposed to a extremely low temperature ($0{\sim}-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. Also, due to freezing of water droplet, impingement erosion is expected in the curved pipeline. The stability of the pipelines can be influenced by impingement erosion. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics and impingement erosion of Arctic and ocean pipelines.

Serviceability Assessment of Corroded Subsea Crude Oil Pipelines (부식된 해저 원유 파이프라인의 사용적합성 평가)

  • Cui, Yushi;Kim, Dong Woo;Seo, Jung Kwan;Ha, Yeon Chul;Kim, Bong Ju;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Pipelines are one of the most important structures in subsea equipment. It is the main equipment for transportation of crude oil and natural gas to the downstream facilities. Crude oil and natural gas leak will be carry out not only political and financial issues but also pollution to the environment. Inaccurate predictions of corrosion behavior will make hazardous consequences. The serviceability assessment of corroded structures is essential especially for subsea pipelines. As corrosion is concerned, the effects of failure due to significant reduction will make it hard to the pipeline operator to maintain the serviceability of pipelines. In this paper, the serviceability assessment of corroded crude oil pipeline is performed using the industry design code (Shell92, DNV RP F101, ASME B31G, BS 7910, PCORRC) and FEA depending on corrosion area. In last step, the future integrity of the subsea crude oil pipeline is assessed to predict the remaining year in service of crude oil pipelines.

An analysis of water hammer in pipeline systems with pump (펌프관로계의 수격현상 해석)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 1998
  • Unsteady flow problems created by hydraulic transients in pipeline systems with pump are of significant importance because they can cause excessive pressure, cavitation, vibration and noise. In this paper, an analysis of transient flow for the pump pipelines is developed by means of the characteristic method. The calculated results of the program to simulate water hammer due to sudden valve closure in a simple pipeline are compared with those of the analytical method. Expecially the water hammer due to power failure in pump pipeline system with surge tank was simulated. As the results, both the upsurge and the downsurge along the pipeline are reduced.

  • PDF

An experimental study on the effects of internal tubular coatings on mitigating wax deposition in offshore oil production

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1333-1339
    • /
    • 2014
  • As the demand for petroleum resources increases, and oilfields on lands and in shallow-sea become exhausted, the areas for oil production are expanding to the deep sea and therefore technologies for flow assurance are coming into the highlight. In low temperature environment such as the deep sea, wax is accumulated and prevents stable oil production. Therefore, the development of flow assurance technologies is required. Wax is precipitated in crystalline form when the oil temperature decreases below the wax appearance temperature; it then accumulates on the inner walls of pipelines causing blockages. In particular, in subsea pipelines, which have a large surface contact area with the surrounding seawater, wax deposition problems are frequent. The internal tubular coating can effectively reduce wax deposition without pausing oil production when the coating is appropriately designed. This study carried out wax deposition tests on a number of internal tubular coatings under single flow conditions. The results were analyzed for the effects that the physical properties of the coatings had on wax deposition.

Investigation on electrochemical performance of Al anode material for marine growth prevention system

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su;Lee, Seung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.968-973
    • /
    • 2014
  • Aluminum anode of marine growth prevention system for ship is installed in seachest or sea water strainer. The Al anode is connected to a control panel that feeds a current to the anode. The dissolved ions produced by the anode are transferred in sea water, spreads through the sea water pipe system and creates a protective film in the pipelines. Thereby, corrosion in pipeline system significantly is reduced. In application on condition as a steel ship, the big accident can be caused by the corrosion. Accordingly, in this research, we evaluated influence of applied current and flow velocity on electrochemical characteristics of Al anode for marine growth prevention system (MGPS). Based on the results of the erosion-cavitation experiments, cavitation rate increased greatly until 120 min. of the experimental time and decreased a little at the point of 180 min. where pit grew and merging occurred but showed a tendency of steadily increasing consumption rates. Based on the results of the Tafel analysis, compared to static states, corrosion current densities show a rapidly increasing tendency when flow occurred.