• Title/Summary/Keyword: Marine natural products

Search Result 233, Processing Time 0.025 seconds

Research and Development of Marine Bio-Organisms - Introduction and Its prospect -

  • Han, Sangtae;Kim, Jong-Man
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.73-76
    • /
    • 2007
  • A large number of natural products were worldwidely discovered from maine organisms. There are many secondary metabolites produced by maine organisms which showed very strong bio-activities and distinct bio-active mechanisms. In korea, about 350 secondary metabolites including more than 280 novel compounds have been isolated and structually defined. Many researches for developing products such as cosmetics, functional food materials, anti-fouling substances are being performed using distinct activities of marine organisms. Although the research on marine natural products has been remained at its initial or developing stage of drug development, significant progress has been made for isolation, structure determination and bioassay of secondary metabolites.

  • PDF

Salternamide E from a Saltern-derived Marine Actinomycete Streptomyces sp.

  • Kim, Seong-Hwan;Shin, Yoonho;Lee, Sang Kook;Shin, Jongheon;Oh, Dong-Chan
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.273-277
    • /
    • 2015
  • Comprehensive chemical analysis of extracts and fractions of marine actinomycete strains led to the discovery of a new minor secondary metabolite, salternamide E (1), from a saltern-derived halophilic Streptomyces strain. The planar structure of salternamide E (1) was elucidated by a combinational analysis of spectroscopic data including NMR, MS, UV, and IR. The absolute configuration of salternamide E (1) was determined by circular dichroism spectroscopic analysis. Salternamide E displayed weak cytotoxicity against various human carcinoma cell lines.

Reaction Mechanism of Vanadium Haloperoxidase and Marine Natural Products (Vanadium Haloperoxidase의 구조와 작용 메커니즘과 해양천연물질)

  • Han, Jae-Hong
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2005
  • Marine natural products with various bioactivities are featured with similar structure to the common secondary metabolites and generally modified by halogenides, such as chloride, bromide, and iodide ions. Vanadium haloperoxidase is a key enzyme for the production of marine natural products and a metalloenzyme which requires a cofactor of vanadate. This review will cover isolation of vanadium haloperoxidase and the protein structures, as well as reaction mechanism of the metalloenzyme. Finally, reactivity of vanadium haloperoxidase and the biosynthesis of the secondary metabolites of indole, terpenoids, and acetogenins will be described.

Marine Bioprocess Engineering: Building Bridges from Discovery to Commercialization of Marine Natural Products

  • Zhang, Wei;Jin, Meifeng;Yu, Xinju;Deng, Maicun;Yuan, Quan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.137-140
    • /
    • 2000
  • Numerous novel marine natural products have been discovered and isolated from varied marine organisms by the diligent bio-prospectors over the past decades. An assessment of the current status of commercial development of these natural compounds indicates only minimal commercialization due to the lack of sustainable supply. To bridge the gaps between discovery and commercialization of these tantalizing bioactive compounds, marine bioprocess engineering is the key for its success. The problems, challenges and opportunities for marine bioprocess engineers are examined for the timely transformation of the discovery into commercial reality. Marine bioprocess engineers will find it the most rewarding practice of their expertise in diving into the ocean.

  • PDF

Anti-Inflammatory Effect of Violapyrones B and C from a Marine-derived Streptomyces sp.

  • Lee, Hwa-Sun;An, Bong-Jeun;Kim, Hyeon Jeong;Cho, Yong Hun;Kim, Dong In;Jang, Jae Yoon;Kwak, Jae Hoon;Lee, Hyi-Seung;Lee, Yeon-Ju;Lee, Jong Seok;Shin, Hee Jae
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.251-254
    • /
    • 2015
  • Recently, we reported violapyrones B, C, H and I, unusual 3, 4, 6-trisubstituted ${\alpha}-pyrones$ derivatives, from the culture broth of the marine Streptomyces sp. 112CH148. In previous studies, violapyrones have been shown to have antibacterial and antitumor activities. However, the anti-inflammatory effect of violapyrones has not been reported yet. As part of our ongoing study for the discovery of bioactive metabolites from marine microorganisms, we found that violapyrones also have anti-inflammatory activity. In this study, we investigated the effect of violapyrones on LPS-induced inflammatory responses in vitro. Violapyrones B and C did not affect the viability of RAW 264.7 cells at concentrations up to $25{\mu}M$. However, violapyrones B and C inhibited the production of NO compared to the LPS-induced control. In addition, violapyrones B and C down-regulated the expression of iNOS protein in LPS-stimulated RAW 264.7 cells. To the best of our knowledge, this is the first report on the anti-inflammatory activity of violapyrones B and C.

Isolation and Structure Determination of Streptochlorin, an Antiproliferative Agent from a Marine-derived Streptomyces sp. 04DH110

  • Shin, Hee-Jae;Jeong, Hyun-Sun;Lee, Hyi-Seung;Park, Song-Kyu;Kim, Hwan-Mook;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1403-1406
    • /
    • 2007
  • An antiproliferative agent, streptochlorin, was isolated from the fermentation broth of a marine actinomycete isolated from marine sediment. Phylogenetic analysis of the 16S rRNA gene sequence indicated that the strain belongs to the genus Streptomyces. Bioactivity guided fractionation of the culture extract by solvent partitioning, ODS open flash chromatography, and reversed-phase HPLC gave a pure compound, streptochlorin. Its structure was elucidated by extensive 2D NMR and mass spectral analyses. Streptochlorin exhibited significant antiproliferative activity against human cultured cell lines.

ERRATUM

  • Le, Minh Ha;Do, Thi Thanh Huyen;Phan, Van Kiem;Chau, Van Minh;Nguyen, Thi Hong Van;Nguyen, Xuan Nhiem;Bui, Huu Tai;Pham, Quoc Long;Bui, Kim Anh;Kim, Seung Hyun;Hong, Hye-Jin;Kim, Sohyun;Koh, Young-Sang;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2218-2218
    • /
    • 2013

Bile acids from a Marine Sponge-Associated Fungus Penicillium sp.

  • Pil, Gam Bang;Won, Ho Shik;Shin, Hee Jae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • Chemical investigation of a marine-derived fungus, Penicillium sp. 108YD020, resulted in the discovery of six bile acid derivatives, glycocholic acid (1), glycocholic acid methyl ester (2), cholic acid (3), glycochenodeoxycholic acid (4), glycodeoxycholic acid methyl ester (5), and cholic acid methyl ester (6). The structures of six bile acid derivatives 1-6 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis.