• Title/Summary/Keyword: Marine electric power generation

Search Result 34, Processing Time 0.02 seconds

A comparison between fuel cells and other alternatives for marine electric power generation

  • Welaya, Yousri M.A.;Gohary, M. Morsy El;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

Electric power consumption predictive modeling of an electric propulsion ship considering the marine environment

  • Lim, Chae-og;Park, Byeong-cheol;Lee, Jae-chul;Kim, Eun Soo;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.765-781
    • /
    • 2019
  • This study predicts the power consumption of an Electric Propulsion Ship (EPS) in marine environment. The EPS is driven by a propeller rotated by a propulsion motor, and the power consumption of the propeller changes by the marine environment. The propulsion motor consumes the highest percentage of the ships' total power. Therefore, it is necessary to predict the power consumption and determine the power generation capacity and the propeller capacity to design an efficient EPS. This study constructs a power estimation simulator for EPS by using a ship motion model including marine environment and an electric power consumption model. The usage factor that represents the relationship between power consumption and propulsion is applied to the simulator for power prediction. Four marine environment scenarios are set up and the power consumed by the propeller to maintain a constant ship speed according to the marine environment is predicted in each scenario.

Electric power system design and analysis for FLNG vessel

  • Lee, Geunbo;Jang, Jaehyeoung;Lyu, Sungkak;Yu, Jinyeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.573-580
    • /
    • 2014
  • The electrical reliability of the power generation and distribution system of Floating Liquefied Natural Gas vessels has been analyzed according to the operating modes using Electrical Transient Analysis Program in this paper. Electricity is used for the topside processes, cargo pumps for off-loading, thrusters for heading control and marine equipment. It is very important to improve the safety, efficiency, and stability of the electrical power system for successful operation. The voltage variation of the high and the low voltage bus shall be within the primitive limitation range at normal operation loads both in steady state and in the transient state. The power system was simulated and compared with class rule for design verification.

The Research of the Hybrid Power Generation using Ocean Wave (파력을 이용한 하이브리드 발전에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.861-866
    • /
    • 2011
  • This paper described the hybrid power generation using ocean wave that consists of linear power generation system and vibrational power generation system. The linear power generation system is made up of the winding coil, the permanent magnet and it is performed stable generation regardless of the wave frequency using directly the ocean wave velocity. And the vibration power generation system consists of the winding coil, the permanent magnet and spring. When the vibration system natural frequency in the vibrational power generation system is tuned to the ocean wave frequency, the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion, then we can obtain more the electric power. Therefore, in this paper, the proposed hybrid power generation using ocean wave have merits that obtaining the more electric energy in resonance frequency and carrying out stable generation even over the range of resonance frequency.

Optimization Power Management System for electric propulsion system (전기추진시스템용 OPMS 기법 연구)

  • Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

Development of a Highly Efficient Boiler System Using a Diesel Engine

  • Lee, D.-H;Lee, D.-Y;Jo, M.-C;Cho, H.-N;Kim, Y.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.367-375
    • /
    • 2004
  • We have developed a highly efficient boiler system using the 2,600cc Diesel engine. In this system, the co-generation concept is utilized in that the electric power is produced by the generator connected to the engine, and waste heat is recovered from both the exhaust gases and the engine itself by the shell-and-tube heat exchangers. The heat exchanger connected to the engine outlet is specially designed such that it not only recovers waste heat effectively from the exhaust gases, but significantly reduces an engine noise. It is found that the total efficiency(thermal efficiency plus electric power generation efficiency) of this system reaches maximum 96.3% which is about 15% higher than the typical Diesel engine boiler system currently being used worldwide.

Electric Power System Design and Analysis for Drilling Rigs

  • Kim, Chul-Ho;Kim, Yoon-Sik;Jung, Hyun-Woo;Ryu, Seung-Nam;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.942-947
    • /
    • 2012
  • As electricity has been used in ship's propulsion, it is necessary to increase the system voltage and current for the electrical distribution system. So it is required to improve the system safety and efficiency, the power stability, the efficiency of the generation through various analysis of ship's electric power system. In this paper, the electrical service reliability of the power distribution system of semi submersible drilling rigs has been analysed and discussed using ETAP.

A Study on Electricity Generation of Marine Sediment Cells (해양 퇴적토전지의 발전 특성에 대한 연구)

  • Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2011
  • Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

Ice Marking Pattern of Flowing Organic Water Solution in a Horizontal Cooled Tube (수평냉각관내에서 유동하는 유기수용액의 제빙형태)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.52-57
    • /
    • 2000
  • Recently large capacity of electric equipment and increasing in atomic power generation are shown. One of the reason is shortage of the electric power supply for air conditioning load during summer. And every consumer is concerning about economical refrigeration and air conditioning system to decreases electric power consumption and decrease in global warming. For these necessities, ice making thermal storage system is required. Therefore, in this paper, the possibility of continuous slurry ice making using flowing organic water solution in cooled circular tube has been investigated. The experiments was carried out under some parameters of concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in tube, As a result, four types of operating conditions in the pipe, that was supercooling, continuous ice making, intermittent ice making and ice blockage, were classified . And it was found that the critical condition for continuous ice making was acquired as a function of these experimental parameters.

  • PDF

A Study on the Installation Angle of the Marine Solar Power Generation System (해상용 태양광 발전 시스템의 설치 각도에 관한 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • A solar power generation system on single point moored offshore plant has independent power system In order to satisfy the maritime environment and account for the number of sunless days, it is important to supply stable electric power to the systems. For these reasons, solar panels are installed in multiple directions. However, a partial shading effect occurs because the amount of light incident on each panel is different. The generated power by the solar generation system installed on land is affected by the latitude, then it is installed at an angle of 30 to $45^{\circ}$. in the case of Korea. In the case of a solar power generation system installed in a mooring type of marine plant, there is a possibility that the maximum power point is outside of the controllable range due to the partial shading effect. Therefore, a power generation loss occurs. By reducing the light amount difference between both panels, the maximum power point can exist in a range where the MPPT algorithm can track the power. The purpose is so the power generation efficiency can be further increased. In this paper, simulation results show that the highest power generation efficiency is obtained at an installation angle of $20^{\circ}$.