• Title/Summary/Keyword: Marine ecotoxicity test

Search Result 17, Processing Time 0.017 seconds

A Study of Environmental Conditions of Survival Rate and Relative Growth Rate in Female Gametophyte of Undaria pinnatifida for Toxicity Assessment (생태독성평가를 위한 미역(Undaria pinnatifida) 암배우체 생존율 및 상대성장률의 환경조건 연구)

  • Ju-Wook, Lee;Yun-Ho, Park;Bo-Ram, Sim;Hyong-Joo, Jeon;Seung, Heo;Un-Ki, Hwang
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • The ecotoxicity test method using Undaria pinnatifida spore is challenging to use throughout the year. Since U. pinnatifida female gametophytes can be cultured in the laboratory, they can be used for ecotoxicity testing at any time. Changes in female gametophyte survival rate and relative growth rate in U. pinnatifida exposed to various environmental conditions were analyzed. The female gametophyte of U. pinnatifida was exposed to salinity (5~40 psu), temperature (5~30℃), pH (4~10), and light intensity (0~120 μmol photon m-2 s-1). Based on the highest average value, the survival rate of female gametophyte was highest at a temperature of 20℃, salinity 27.5 psu, pH 8, and light intensity 30 μmol photon m-2 s-1. And the relative growth rate was highest at a temperature of 15℃, salinity 35 psu, pH 9, and light intensity of 60 μmol photon m-2 s-1. As a result of this study, the method using the optimal conditions for the survival rate and relative growth rate is expected to be a practical test method that can complement the current method.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum (해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과)

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.

Ecotoxicity Evaluation of PFCs using Marine Invertebrate, Sea Urchin (Mesocentrotus nudus) (둥근성게(Mesocentrotus nudus)를 이용한 과불화화합물의 생태독성평가)

  • Choi, Hoon;Lee, Ju-Wook;Lee, Seung-Min;Jeon, Hyung-Ju;Heo, Seung;Hwang, Un-Ki
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.80-87
    • /
    • 2021
  • In this study, the toxic effects of PFOA and PFOS potassium salt on Mesocentrotus nudus using 10 min-fertilization rate and 48 h-normal embryogenesis were confirmed through the calculation of toxicity values such as Non-observed effective concentration, Low-observed effective concentration, and 50% of effective concentration. The case of 10 min-fertilization rate and 48 h-normal embryogenesis showed the concentration-dependent reduction pattern when exposed to PFOA and PFOS potassium salt, in tested concentration, respectively. The EC50 values of 10 min-fertilization rates for PFOA and PFOS potassium salt were 1346.43 mg/l and 536.18 mg/l, respectively, and the EC50 values of 48 h-normal embryogenesis were 42.67 mg/l and 17.81 mg/l, respectively. Both toxicity test methods showed high toxicity sensitivity to PFOS potassium salt. Recent studies have shown that the concentration of PFOA and PFOS in the marine environment has continuously decreased, and it is not enough to show acute toxicity to sea urchin. However, PFOA and PFOS have a very long half-life and can accumulate throughout the life of marine life, so it is still observed at a high concentration in shellfish. Therefore, a study on chronic toxicity through the whole-life cycle of marine organisms in coastal environments should be needed.

Shipboard Verification Test of Onboard Carbon Dioxide Capture System (OCCS) Using Sodium Hydroxide(NaOH) Solution (가성소다(NaOH) 용액을 이용한 선상 이산화탄소 포집 장치의 선박 검증시험)

  • Gwang Hyun Lee;Hyung Ju Roh;Min woo Lee;Won Kyeong Son;Jae Yeoul Jeong;Tae-Hong Kim;Byung-Tak NAM;Jae-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.51-60
    • /
    • 2024
  • Hi Air Korea and Hanwha ocean are currently developing an Onboard Carbon dioxide Capture System (OCCS) to absorb CO2 emitted from ship's engine using a sodium hydroxide(NaOH) solution, and converting the resulting salt into a solid form through a chemical reaction with calcium oxide (CaO). The system process involves the following steps; 1)The reaction of CO2 gas absorption in water, 2)The reaction between carbonic acid (H2CO3) and NaOH solution to produce carbonate or bicarbonate, and 3)The reaction between carbonate or bicarbonate and CaO to form calcium carbonate (CaCO3). And ultimately, the solid material, CaCO3, is separated and discharged using a separator. The OCCS has been installed on an ship and the test results have confirmed significant reduction effects of CO2 in the ship's exhaust gas. A portion of the exhaust gas emitted from the engine was transferred to the OCCS using a blower. The flow rate of the transferred gas ranged from 800 to 1384 m3/hr, and the CO2 concentration in the exhaust gas was 5.1 vol% for VLSFO, 3.7 vol% for LNG and a 12 wt% NaOH solution was used. The results showed a CO2 capture efficiency of approximately 42.5 to 64.1 vol% and the CO2 capture rate approximately 48.4 to 52.2kg/hr. Additionally, to assess the impact of the discharged CaCO3on the marine ecosystem, we conducted "marine ecotoxicity test" and performed Computational Fluid Dynamics (CFD) analysis to evaluate the dispersion and dilution of the discharged effluent.

A Study on Prioritization of HNS Management in Korean Waters (해상 위험·유해물질(HNS) 관리 우선순위 선정에 관한 연구)

  • Kim, Young Ryun;Kim, Tae Won;Son, Min Ho;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2015
  • The types of hazardous and noxious substances (HNS) being transported by sea in Korea are at about 6,000, HNS transport volume accounts for 19% of total tonnage shipped in Korea, and the increase rate of seaborne HNS trade in Korea is 2.5 times higher than the average increase rate of the world seaborne HNS trade. Reflecting this trend, HNS spill incidents have been frequently reported in Korean waters, and there are increasing social demands to develop HNS management technology for the preparedness, response, post-treatment and restoration in relation to HNS spill incidents at sea. In this study, a risk-based HNS prioritization system was developed and an HNS risk database was built with evaluation indices such as sea transport volume, physicochemical properties, toxicities, persistency, and bioaccumulation. Risk scores for human health and marine environments were calculated by multiplying scores for toxicity and exposure. The top-20 substances in the list of HNS were tabulated, and Aniline was ranked first place, but it needs to be managed not by individuals but by HNS groups with similar score levels. Limitations were identified in obtaining data of chronic toxicity and marine ecotoxicity due to lack of testing data. It is necessary to study on marine ecotoxicological test in the near future. Moreover, the priority list of HNS is expected to be utilized in the development of HNS management technology and the relevant technologies, after the expert's review process and making up for the lack of test data in the current research results.

Development of Marine Ecotoxicological Standard Methods for Ulva Sporulation Test (파래의 포자형성률을 이용한 해양생태독성시험 방법에 관한 연구)

  • Han, Tae-Jun;Han, Young-Seok;Park, Gyung-Soo;Lee, Seung-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • As an aquatic ecotoxicity test method, a bioassay using the inhibition of sporualtion of the green macroalga, Ulva pertusa, has been developed. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $7{\sim}9$, $25{\sim}35\;psu$ and $15{\sim}20^{\circ}C$, respectively. The validity of the test endpoint was evaluated by assessing the toxicity of four metals (Cd, Cu, Pb, Zn) and elutriates of sewage or waste sludge collected from 9 different locations. When the metals were assayed, the $EC_{50}$ values indicated the following toxicity rankings: Cu ($0.062\;mg{\cdot}L^{-1}$) > Cd ($0.208\;mg{\cdot}L^{-1}$) > Pb ($0.718\;mg{\cdot}L^{-1}$) > Zn ($0.776\;mg{\cdot}L^{-1}$). When compared with other commonly used bioassays of metal pollution listed on US ECOTOX database, the sporualtion test proved to be the most sensitive. Ulva sporulation was significantly inhibited in all elutriates with the greatest and least effects observed in elutriates of sludge from industrial waste ($EC_{50}=6.78%$) and filtration bed ($EC_{50}=15.0%$), respectively. The results of the Spearman rank correlation analysis for $EC_{50}$ data versus the concentrations of toxicants in the sludge presented a significant correlation between toxicity and four heavy metals(Cd, Cu, Pb, Zn). The method described here is sensitive to toxicants, simple to use, easy to interpret and economical. It is also easy to procure samples and maintain cultures. The present method would therefore probably make a useful assessment of aquatic toxicity of a wide range of toxicants. In addition, the genus Ulva has a wide geographical distribution and species have similar reproductive processes, so the test method would have a potential application worldwide.