• Title/Summary/Keyword: Marine diesel generator

Search Result 60, Processing Time 0.025 seconds

A study on the Transient Torsional Vibrations of Four Stroke Marine Diesel Engines (선박용 4행정 디젤엔진의 과도 비틀림 진동에 관할 연구)

  • Lee, D.C.;Yu, J.D.;Jeon, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.44-50
    • /
    • 2002
  • Theoretical analysis on the transient torsional vibration was started from early 1960's for high power synchronous motor application. As for marine engineering, simulation and measuring techniques of transient torsional vibration have been steadily studied by manufacturer of flexible coupling and designer of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration for four stroke marine diesel engine application using Newmark method is introduced.

  • PDF

A Study on the Transient Torsional Vibration of 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 과도비틀림진동에 관한 연구)

  • Lee, D. C.;J. D. Yu;H. J. Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.2-312
    • /
    • 2002
  • Theoretical analysis of transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by manufacturers of flexible coupling and designers of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration of four stroke marine diesel engine using the Newmark method are introduced. (omitted)

  • PDF

A study on characteristics of combustion and exhaust emissions on bio-diesel fuel in marine diesel generator engine (Low load centering) (선박용 디젤발전기에서 바이오연료의 연소 및 배기배출물 특성에 관한 연구 (저부하 영역 중심으로))

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.716-721
    • /
    • 2015
  • As the severity of environmental pollution has increased, restrictions on air pollution have been strengthened. Stringent regulations have been imposed, not only on marine diesel engines but also on automotive and industrial power plants. Thus, biofuels have been directly applied in practical engines and used in training ships for basic research. Even though a high biofuel percentage cannot be used in a training ship engine for safety reasons, because this type of engine is larger than those used in institutional laboratories, the results will provide important basic information that will allow organizations to determine the status of a large output. Biodiesel fuel was studied to determine how it would affect the combustion characteristics and exhaust emissions of a marine diesel generator engine. The main results can be summarized as follows. Because the physical and chemical compositions of biofuels are similar to those of diesel fuel, it was found that their practical use was possible in a training ship. The specific fuel consumption and NOx increased, whereas a tendency was found for carbon monoxide and soot to decrease. In addition, no significant pressure change difference was found between the diesel fuel and biofuels.

Governor upgrade for PWR NPP safety related Emergency Diesel Generator (경수로형 원자력 안전등급 비상디젤발전기)

  • Kim, Yoon Sik;Jeon, Il-Young;Song, Dong-Young;Kim, Chang-Kook;Sim, Su-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.293-298
    • /
    • 2005
  • The following is final report for governor upgrade for PWR NPP safety related EDG Kori NPP No.2 Unit. The upgraded system includes more beneficial function like as "Slow start with starting ramp", "Generator load sensing & control capability" and "Emergency ramp during slow start". This paper show functional operation of slow start regime according to NRC regulatory guide which guide regulation to NPP safety related environment.

  • PDF

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA) (유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화)

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

A STUDY ON THE SPEED CONTROL OF A LOW SPEED-LONG STROKE MARINE DIESEL ENGINE (저속 장행정 박용디젤기관의 속도제어에 관한 연구)

  • 유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 1988
  • Speed of a diesel engine is usually controlled by the hydraulic governor which uses the centrifugal force of rotating fly balls for sensing the error speed. But for a recently developed high efficient, low speed and long stroke 2 cycle marine diesel engine, this governor doesn't work well enough because of too much changes of toraring force during one revolution of engine and too long uncontrollable time due to small numbers of cylinder. For improvement of jiggling phenomena and unstability various studies are being carried out, but they are not enough for a steep load change in a small ship's generator plant or at rough sea condition in a propulsion engine. In this paper, authors propose a new method to control a fuel before the change of angular velocity due to load change by feedforward the change of load, and find that the proposed method shows quite a good control performance in comparision to the customary PID control method by simulation using a digital computer for the various load change.

  • PDF

A Study on the Speed Control of Medium Diesel Engine using a Fuzzy-PI Controller (퍼지 PI제어기를 이용한 중속 디젤 기관의 속도제어에 관한 연구)

  • 김영일;천행춘;서인호;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-440
    • /
    • 2000
  • The speed control system of diesel engine is considerably nonlinear. Therefore, a countermeasure such as gain scheduling used to be incorporated to compensate this nonlinearity. On the other hand, it is said that fuzzy control is very robust against nonlinearity. But it is difficult to get a satisfactory response with only fuzzy control in real system. In this paper authors design a fuzzy-PI controller for the speed control of Medium diesel engine and carry out experiments with dedicate system implemented by Intel 80916KC to real diesel engine, Deawoo MAN 6Cyl., 1800rpm driving 3$\psi$220V, 150KW generator. We confirm the effectiveness of proposed control system.

  • PDF

Parallel Running System of the Loaded Diesel Generator to Infinite Bus (부하를 분담하고 있는 디젤발전기의 무한대 모선과의 병렬운전 시스템)

  • 천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1017-1025
    • /
    • 2004
  • Generally generator is connected to the bus with no load. After the connection to the bus. the frequency of generator system with no load has to be increased for preventing the reverse power. But in a few case of parallel running with infinite bus system, we have to synchronize the loaded generator to the infinite bus. The frequency of generator system with load has to be lowered for prevention of load shift to the bus system. The blackout of infinite bus decreases the parallel running generator's frequency because of load increasing. In this paper we propose a method that the generator with load maintains the frequency constantly after the blackout of infinite bus. With the constant speed control and load control method of parallel running system to the infinite bus we apply the method to the industrial generating system.

A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine (디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF