• Title/Summary/Keyword: Marine diesel engines

Search Result 259, Processing Time 0.022 seconds

Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines

  • Lu, Daoyi;Theotokatos, Gerasimos;Zhang, Jundong;Tang, Yuanyuan;Gan, Huibing;Liu, Qingjiang;Ren, Tiebing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.659-673
    • /
    • 2021
  • This study aims to investigate the impact of the High Pressure Selective Catalytic Reduction system (SCR-HP) on a large marine two-stroke engine performance parameters by employing thermodynamic modelling. A coupled model of the zero-dimensional type is extended to incorporate the modelling of the SCR-HP components and the Control Bypass Valve (CBV) block. This model is employed to simulate several scenarios representing the engine operation at both healthy and degraded conditions considering the compressor fouling and the SCR reactor clogging. The derived results are analysed to quantify the impact of the SCR-HP on the investigated engine performance. The SCR system pressure drop and the cylinder bypass valve flow cause an increase of the engine Specific Fuel Oil Consumption (SFOC) in the range 0.3-2.77 g/kWh. The thermal inertia of the SCR-HP is mainly attributed to the SCR reactor, which causes a delayed turbocharger response. These effects are more pronounced at low engine loads. This study supports the better understanding of the operating characteristics of marine two-stroke diesel engines equipped with the SCR-HP and quantification of the impact of the components degradation on the engine performance.

A Study on the Dynamic Characteristics and Performance of Geislinger Type Torsional Vibration Damper for Two Stroke, Low-speed Diesel Engine (저속 2행정디젤엔진의 가이스링거형 비틀림 진동댐퍼 동특성 및 성능에 관한 연구)

  • 이돈출;이병운;박용남;박병학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.17-28
    • /
    • 1992
  • During the last decade, engine makers have developed new types or increasing power rate engines to enlarge theirs marketing shear in two stroke, low-speed diesel engines. As the results, these engines have increased the additional stresses due to torsional vibration more than old model engines. The torsional vibration dampers are necessary in order to reduce heigher additional stresses of intermediate and crank shaft in these engine. In this paper, the optimum designing of Geislinger type torsional Damper has been carried out, based on the theoretical conception. The dynamic characteristics and performance fo dampers are estimated by the measuring results obtained with the monitoring system of dampers and additional stresses of propulsion shafts.

  • PDF

A Study on the Performance and Exhaust Emissions of Agricultural Diesel Engines by Use of Rice Bran Oil as a Fuel (미강유 연료에 의한 전용 디젤기관의 성능 및 비기 배출물에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.816-826
    • /
    • 1998
  • The effects of rice bran oil on the characteristics of performance and exhaust emissions have been experimentally examined by a single cylinder four cycle direct injection water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil blends of rice bran with light oil and rice bran oil as a fuel. The fuel injection timing if fixed to $22^{\circ}$ BTDC regardless of fuel type engine loads and speeds. Any oxygen is not included in light oil while the oxygen contents of 10.7% are included in rice bran oil. The lower calorific value of rice bran oil is less than light oil and the viscosity is very high compared with light oil. In pre-sent study it is found that these major differences of chemical and physical properties control the combustion parameters that affect the performance and exhaust emissions of diesel engines using a rice bran oil as fuels.

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

A Study on the Calcuation of NO Formation in Cylinder for Diesel Engines (디젤기관의 연소실내 NO 생성농도 예측에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.543-551
    • /
    • 1999
  • Diesel engine is a major source of the air pollution. In general the concentrations of these pollu-tants in diesel engine exhaust differ from values calculated assuming chemical equibrium. Thus the detailed chemical mechanisms by which these pollutions form and the kinetic of these process-es are important in determining emission levels. In this study the computer program has been developed to calculate the required thermodynam-ic properties of combustion products(10 spacies) for both equilibrium and non-equilibrium in cylin-der for diesel engines. Nitric oxide emissions are calculated by using the extended Zeldovich Kinet-ic mechanism with a steady state assumption for the N concentration and equilibrium values used for H, O, $O_2$ and OH concentrations. By the results it is confirmed that developed simulations program with the NO prediction model is validated against residual mass fraction combustion index of Wiebe's functions pre-mixed com-bustion ration fuel injection timing.

  • PDF

Theoretical Analysis on Transient Torsional Vibrations of Two Stroke Low Speed Diesel Engines

  • Lee, Don-Chool;Kim, Sang-Hwan;Yu, Jung-Dae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.207-214
    • /
    • 2007
  • Theoretical analysis on transient torsional vibration was started from the early 1960s for high power synchronous motor application. Particularly. its simulation and measuring techniques in marine diesel engine field have been steadily studied by some classification societies and large marine diesel engine designers. This paper introduces the simulation method on transient torsional vibration of two stroke low speed diesel engine using the Newmark method.