• Title/Summary/Keyword: Marine diesel

Search Result 697, Processing Time 0.026 seconds

Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화)

  • Lee, Hoki;Lee, Dongkil;Park, Gunil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

A study on power improvement emission characteristics of marine diesel engine with response power 200HP turbocharger (대응출력 200마력 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • To improve efficiency of diesel engine which requests high output recently and is used all kinds of industrial areas, this thesis experimented dynamic characteristics and exhaust gas characteristics of diesel engine installed by supercharger of correspondent output 200HP and natural inhalation diesel engine through the dynamometer and exhaust gas analyzer in same condition. As the result of experiment with natural inhalation diesel engine and diesel engine installed by supercharger, there were a few differences of output, but dynamic characteristics at high speed showed increased output and efficiency of the engine installed by supercharger. On the contrary, in exhaust gas characteristics, the model installed by supercharger showed increased exhaust gas such as $NO_X$, $O_2$, etc, but added value of exhaust gas is low if considering $CO_2$ reduction and efficiency of dynamic characteristic's increase. Based on the results, diesel engine installed by supercharger is expected to show higher economic feasibility than natural inhalation diesel than natural inhalation engine from an angle of efficiency. Keywords: 200hp class Turbocharger, Exhaust Gas, Engine Performance, Marine Diesel Engine.

Exhaust Noise Control of Marine Diesel Engine Using Hybrid Silencer (조합형 소음기를 이용한 박용 디젤 엔진 배기 소음 제어)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.679-684
    • /
    • 2009
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are ineffective to control exhaust noise because of low absorption in the low frequency range. In the paper, exhaust noise control of marine diesel engine was studied by using the hybrid silencer, which was composed of virtually divided array of concentric hole-cavity resonators and conventional absorptive silencer. A series of tests including field tests were performed to investigate the acoustic performance of the hybrid silencer. Consequently, its high performance of 5${\sim}$10 dB noise reduction in the low frequency range was confirmed and it is expected to be very helpful in reducing the exhaust noise of marine diesel engine.

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

Vibration Control of Engine Body for Two Stroke Low Speed Diesel Engine using Dynamic Vibration Absorber (동흡진기에 의한 저속 2행정 디젤엔진의 본체진동 제어)

  • 이돈출;유정대;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.631-637
    • /
    • 2002
  • Two stroke low speed diesel engines are used as a power supplier not only for marine vessel but also diesel power plant with a benefit of its higher mobility and durability than the other thermal engines. However, there are some disadvantages such as the bigger vibrating excitation forces generated by high combustion pressure in cylinders which various kinds of vibrations are caused. In this paper, it is theoretically studied to control engine body vibration using dynamic vibration absorber. As an actual case, dynamic absorbers are designed for controlling X-mode vibration of 9K80MC-S engine on the diesel power plant and its performance is identified by the vibration test both in shop and site

A study on the Transient Torsional Vibrations of Four Stroke Marine Diesel Engines (선박용 4행정 디젤엔진의 과도 비틀림 진동에 관할 연구)

  • Lee, D.C.;Yu, J.D.;Jeon, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.44-50
    • /
    • 2002
  • Theoretical analysis on the transient torsional vibration was started from early 1960's for high power synchronous motor application. As for marine engineering, simulation and measuring techniques of transient torsional vibration have been steadily studied by manufacturer of flexible coupling and designer of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration for four stroke marine diesel engine application using Newmark method is introduced.

  • PDF

A Design for Water Cooling of a Marine Diesel Engine with Verification of Improvement (선박용 수냉식 디젤엔진의 개발 및 성능평가)

  • Sim, Hansub;Jun, Jongoh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • This paper presents a study of heat dissipation away from the fuel combustion of a marine diesel engine. These engines are operated for long periods under high load conditions: so cooling systems are necessary for radiation and control of the high temperature levels. In the study, each component of the water cooling system was developed to achieve improvements in cooling and safety. Heat transfer considerations and arrangement design for the components were important and an intercooler and exhaust manifold incorporated. An optimization of the cooling water's flow path was achieved subject to the need for convenient maintenance. The 750Ps marine diesel engine was used for performance testing of the cooling system. The test results showed adequate cooling performance improvement.

Speed Control of Marine Diesel Engines Using Fuzzy Gain Scheduling (퍼지 게인 스케줄링을 이용한 선박 디젤기관의 속도 제어)

  • 박승수;이현식;김도응;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.638-645
    • /
    • 2002
  • This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.