• 제목/요약/키워드: Marine diesel

검색결과 697건 처리시간 0.03초

Theoretical Analysis on Transient Torsional Vibrations of Two Stroke Low Speed Diesel Engines

  • Lee, Don-Chool;Kim, Sang-Hwan;Yu, Jung-Dae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.207-214
    • /
    • 2007
  • Theoretical analysis on transient torsional vibration was started from the early 1960s for high power synchronous motor application. Particularly. its simulation and measuring techniques in marine diesel engine field have been steadily studied by some classification societies and large marine diesel engine designers. This paper introduces the simulation method on transient torsional vibration of two stroke low speed diesel engine using the Newmark method.

소형 선박용 디젤엔진의 수냉식 열교환기 해석 연구 (Study on Simulation of Water Cooling Heat Exchanger for Small Marine Diesel Engine)

  • 양영준;심한섭
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.201-207
    • /
    • 2012
  • This study was carried out to improve the design of heat exchanger for small marine diesel engine. As air pollutants emitted from small marine diesel engine become international problem, IMO(International Marine Organization) tried to establish severe regulations for NOx reduction. The formation of NOx is affected by cooling system, for instance, such as intercooler, heat exchanger, exhaust manifold, and therefore cooling systems are one of essential parts for design of small marine diesel engine. In this study, heat exchanger for small marine diesel engine was modeled and simulated using CATIA V5R19 and ANSYS FLUENT V.13. Thermal flow simulation for heat exchanger was performed to find the optimal design. As the results, maximum velocity of engine coolant in shell inside was 9.1m/s and it was confirmed that outlet temperature and temperature drop for engine coolant could be calculated by simulating proportional relations of temperature between engine coolant and sea water.

선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구 (An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine)

  • 이돈출;주기세;남택근;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

모델 맷칭법에 의한 디젤기관의 속도제어 (Speed Control of a Diesel Engine by Means of the Model Matching Method)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF

선박용 디젤엔진의 냉각수 유동에 대한 수치해석적 및 이론적 연구 (Numerical and Theoretical Study on the Fluid Flow in the Cooling System of a Marine Diesel Engine)

  • 서용권;허성규;정성식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.119-130
    • /
    • 2008
  • Diesel engine is one of the most expensive and important components in a ship. Many researchers are interested in increasing the performance of diesel engines. Design of an optimum cooling system should also contribute to the enhancement of the performance as well as the efficiency of engines. In this study, we investigated the flow pattern within the cooling system of a marine diesel engine by using numerical simulation prior to the study of the heat-transfer problem. The engine cooling system is composed of five cooling units each unit containing a water-jacket and a cylinder head. Based on the calculated data, we also conducted theoretical analysis that can predict the flow-rate delivery in each of the five units.

NIMONIC 86 소재의 소형 선박디젤엔진 배기밸브 적용에 관한 비교 해석 (Comparative Analysis on Application of Exhaust Valve of Small-sized Marine Diesel Engine for NIMONIC 86 Material)

  • 양영준
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.411-419
    • /
    • 2023
  • In this paper, NIMONIC 86 material was tried to apply to exhaust valve for small-sized marine diesel engine. The both structural stability and thermal resistance in high temperature were needed to use the NIMONIC 86 material as exhaust valve for small-sized marine diesel eng ine. The purpose of this study is to investig ate the application of NIMONIC 86 material to exhaust valve of small-sized marine diesel engine by comparing, respectively, SUH 3 and STS 316 materials. As the results, NIMONIC 86 material has intermediate characteristics between SUH 3 and STS 316 materials in terms of the strength in condition of room temperature. Further NIMONIC 86 material was evaluated to have better characteristics than SUH 3 and STS 316 materials in terms of the thermal conductivity.

Simulation of a two-stroke diesel engine for propulsion in waves

  • Yum, Kevin Koosup;Taskar, Bhushan;Pedersen, Eilif;Steen, Sverre
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.351-372
    • /
    • 2017
  • Propulsion in waves is a complex physical process that involves interactions between a hull, a propeller, a shaft and a prime mover which is often a diesel engine. Among the relevant components, the diesel engine plays an important role in the overall system dynamics. Therefore, using a proper model for the diesel engine is essential to achieve the reasonable accuracy of the transient simulation of the entire system. In this paper, a simulation model of a propulsion system in waves is presented with emphasis on modeling a two-stroke marine diesel engine: the framework for building such a model and its mathematical descriptions. The models are validated against available measurement data, and a sensitivity analysis for the transient performance of the diesel engine is carried out. Finally, the results of the system simulations under various wave conditions are analyzed to understand the physical processes and compare the efficiency for different cases.

2중 Wiebe 연소모델을 이용한 2행정 대형 선박용 디젤엔진의 성능예측 (The prediction of Performance in Two-Stroke Large Marine Diesel Engine Using Double-Wiebc Combustion Model)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.637-653
    • /
    • 1999
  • In this study well-known burned rate expressions of Weibe function and double Wiebe function have been adopted for the combustion analysis of large two stroke marine diesel engine. A cycle simulation program was also developed to predict the performance and pressure waves in pipes using validated burned rate function,. Levenberg-Marquardt iteration method was applied to cali-brate the shape coefficients included in double Wiebe function for the performance prediction of two-stroke marine diesel engine. As a result the performance prediction using double Wiebe func-tion is well correlated withexperimental dta with the accuracy of 5% and pressure waves in intake and transport pipe are well predicted. From the results of this study it can be confirmed that the shape coefficients of burned rate function should be modified using the numerical method suggested for the accurated prediction and double Wiebe function is more suitable than Wiebe func-tion for combustion analysis of large two stroke marine engine.

  • PDF

A Study on the Operation Method of Photovoltaic/Diesel Hybrid Generating System

  • Park, Jae-Shik;So, Myung-Ok;Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.309-314
    • /
    • 2004
  • The exhaust gas emission from marine diesel engines is one of the major environmental issues. The authors focus the use of photovoltaic energy for the electric power system on marine ships. This paper proposes an operation method of a photovoltaic/diesel hybrid generating system for a small ship in consideration of the fluctuating photovoltaic power due to solar radiation. The aim of the proposed operation method is to minimize the fuel consumption and storage capacity of the battery. The validity of the proposed control method is shown by the numerical simulation based on the experimental data of the photovoltaic system.