• Title/Summary/Keyword: Marine Surface Sediment

Search Result 327, Processing Time 0.023 seconds

Correlation of Simrad EM950(95kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea (황해 동부 사퇴분포지역의 표층퇴적물 특성과 Simrad EM950(95 kHz)멀티빔 후방산란 음압간 상관관계)

  • Kong, Gee-Soo;Kim, Seong-Pil;Park, Yo-Seop;Min, Gun-Hong;Kim, Ji-Uk;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.719-738
    • /
    • 2006
  • Simrad EM950 multibeam data and surficial sediment grab samples were acquired to correlate backscatter strength with surficial sediment properties in the eastern Yellow Sea which tidal sand ridges are dominantly developed. The study area is divided into the western sand ridge zone characterized by well sorted, fine sandy sediment, and the eastern non-sand ridge zone characterized by poorly sorted, medium sand with some gravels and shell fragments. In spite of minor difference in grain size between two zones, the variations of backscatter strength between two zones are distinct. Multibeam backscatter strength of study area shows good correlation with the grain size of surface sediment as well as the carbonate contents. High occurrence of carbonate shell fragments can increase grain size and bottom roughness. The dominance of higher backscatter strength in the eastern non-sand ridge zone may reflect the effects of coarse grain size and high shell fragments contents.

Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea (서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화)

  • Na, Jung-Yul;Yu, Sung-Hyup;Seo, Jang-Won
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Vertical temperature distributions in muddy intertidal sediments near the Jebu Island on the west coast of Korea were obtained during the period of ebb tide which occurred in day time. The observations of mud temperature were made with thermistor embedded probe at 2cm interval for 18cm-layer of sediment for five different months of the year. Temporal changes in the vertical profile of the sediment temperature are strongly depend on the air temperature, the previous time of flood tide and the time of ebb tide. Heat exchanges in the surface layer (0-2 cm) in terms of magnitude and direction are greater than and opposite to those in the deeper sediment layer (8-12 cm), respectively and do not show any significant seasonal variations. In general, the surface layer gains heat while the deeper layer loses the heat. By using the 1-D diffusion equation temporal vertical profiles of the sediment temperature were obtained and were compared with the observed ones. The results show that in the sediment layer below 4 cm-depth the heat transport is predominantly by molecular diffusion. The average magnitude of heat flux into the sediment layer (0-18 cm) during the ebb tide when the mudflats were exposed in the middle of the day were between 4.1 and $28.9\;W/m^2$.

  • PDF

Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea (옹진군 어장관리해역의 수질 및 퇴적물 환경 특성)

  • Kim, Sun-Young;Kim, Hyung-Chul;Lee, Won-Chan;Hwang, Dong-Woon;Hong, Sok-Jin;Kim, Jeong-Bae;Cho, Yoon-Sik;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.570-581
    • /
    • 2013
  • To improve productivity of aquaculture animals with management of culturing grounds, survey of mariculture management area in Ongjin-gun about water quality and sedimentary environment had been conducted on June, August and November in 2011. Water temperature in surface and bottom waters ranged from 9.49 to $24.14^{\circ}C$. Salinity and dissolved oxygen concentrations were in the range of 23.19~31.49 and 5.48~9.36 mg/L, respectively, depending on the variation of water temperature. The average concentration of COD was 1.57 mg/L and the concentrations of DIN and DIP showed entirely low level. As the result of grain size analysis, sand(56.66 %) and silt(34.60 %) were predominated. The Mz of sediment showed a variation of 2.59 to $6.62{\O}$ and sorting appeared to be poorly sorted. The concentrations of COD and IL in surface sediment ranged from 1.00 to $11.03mg/g{\cdot}dry$ and 0.72 to 5.29 %, respectively, which showed relatively good positive correlations. On the environmental assessment of trace metals in surface sediment, geoaccumulation index ($I_{geo}$) class indicated that sediments were not contaminated by most of metallic elements except Cr and As. Our result implies that this study area showed good water quality and sediments were not polluted by organic matters and metallic elements.

Evaluation of Heavy Metal Contamination in Intertidal Surface Sediments of Coastal Islands in the Western Part of Jeollanam Province Using Geochemical Assessment Techniques (지화학적 평가기법을 이용한 전남 서해 도서갯벌 퇴적물내 중금속 오염도 평가)

  • Hwang, Dong-Woon;Kim, Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.772-784
    • /
    • 2011
  • We measured grain size, organic matter, and metallic elements (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As) in intertidal sediments collected from six islands in the western part of Jellanam Province in order to evaluate heavy metal contamination in the tidal flat sediments of coastal islands. The evaluation of metal contamination was carried out using geochemical assessment techniques such as sediment quality guidelines (SQGs), enrichment factor (EF), and geoaccumulation index ($I_{geo}$). Surface sediments were classified into four sedimentary facies: sand, gravelly muddy sand, slightly gravelly mud, and silt. The concentrations of heavy metals in intertidal sediments from Jaeun, Amtae, Biguem, and Docho islands showed good positive correlations with mean grain size and ignition loss, indicating that the concentrations of metallic elements in these sediments were dependent on grain size and the organic matter content. The concentrations of heavy metals in sediments from almost all of the stations were lower than two criterion values proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Based on the EF and $I_{geo}$ results, surface sediments were a little polluted for Cr and were moderately polluted for As. Our results suggest that more intensive studies are necessary in the future in order to determine the major source of As in intertidal sediment and to evaluate the As pollution level in macrobenthos.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Geochemical Study of Coastal Sediments around the Samcheonpo Coal-fired Power Plant (삼천포화력발전소 주변해역 퇴적물의 지구화학적 연구)

  • Lee, Doo-Ho;Lim, Ju-Hwan;Jeong, Yeon-Tae;Jeong, Nyeon-Ho;Kang, Jeong-Won
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.85-98
    • /
    • 2001
  • This study was conducted to investigate the geochemical factors governing the distribution of heavy metals(Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the marine surface sediment samples collected from the Samcheonpo coal-fired power plant. Variations of absolute metal concentrations were related to those in textural and/or carbonate and organic matter content. Most elements, except for Pb, showed generally lower contents compared with the average shale concentration, and the effect of anthropogenic input appeared to be minimal in the sediments. Computations of LF%(labile fraction) and EF(enrichment factor) based on all trace metal data indicated the presence of mineralogical control for Co, Cr, Cu, Ni, and Zn, and anthropogenic contamination for Pb, which needs to be considered in the design of long term monitoring programmes.

  • PDF

Characteristics of Seasonal Sediment Transport in Haeundae Beach (표층퇴적물 및 표사수지에 의한 해운대 해수욕장의 계절별 표사 이동특성)

  • Lee, Jong-Sup;Tac, Dae-Ho;Yoon, Eun-Chan;Kim, Seok-Yun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.547-556
    • /
    • 2007
  • The sediment transport by waves, wave-induced current and tidal current was calculated using the TRANSPOR2004, then the seasonal sediment budget was analyzed. Also, annual sediment budget was calculated, and sediment circulation patterns was deduced in the broad area including Haeundae beach. A sediment mainly inflows from the east coast of the beach and then moves to the eastward to the Dongback Is, where the 80% of inflow sediment transported to the eastward as a longshore sediment while 20% of them going out to the offshore at the center of the beach. Above results shows a good agreement with the sediment transport trend analysis results by the Gao model.

Biogenic Particulate Matter Accumulation in Peter the Great Bay, East Sea (Japan Sea)

  • Hong, Gi-Hoon;Park, Sun-Kyu;Chung, Chang-Soo;Kim, Suk-Hyun;Tkalin, Alexander V.;Lishavskaya, Tatiana S.
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.134-143
    • /
    • 1996
  • Sediment cores were collected from one site each in Amursky and Ussuriysky Bays in the Peter the great Bay for $^{210}Pb$, org C, N, biogenic Si, ${\delta}^{13}$C and ${\delta}^{15}$N analysis to elucidate the processes of biogenic particulate matter accumulation and early diagenetic change in the upper sediment column. Biogeochemistry at the core sites of both bays shows differences in sedimentation rate, sediment mixing, and diagenetic processes of particulate biogenic matter. Sedimentary organic matter at the core sites in both bays appeared to be largely derived from marine origin. Sedimentation rates are 173 and 118 mg $cm^{-2}$ $yr^{-1}$(0.13 and 0.11 cm $yr^{-1}$) in Amursky and Ussuriysky Bays, respectively. The surface mixed layer in the core top was present in Amursky Bay but not in Ussuriysky Bay. At the core site in Amursky Bay, incorporation of biogenic particulate matter into the sediment from the overlying waters is 236, 19, 142 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which about 70${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the rest are buried at 25 cm sediment horizon. At the core site in Ussuriysky Bay, incorporation of biogenic particulate matter into the sediment from overlying waters is 164, 18, 76 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which less than 50${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the remainder are buried at 25 cm sediment horizon. This large difference of degradation of biogenic matter in the upper 25 cm sediment column appears to be resulted from the difference in sediment mixing rates between the two cores.

  • PDF

Distribution and Pollution Assessment of Trace Metals in the Surface Sediments around Farming Area of Jinhae Bay (진해만 양식어장 주변 표층 퇴적물 중 미량금속의 분포 특성 및 오염 평가)

  • Choi, Tae-Jun;Kwon, Jung-No;Lee, Garam;Hwang, Hyunjin;Kim, Youngsug;Lim, Jae-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.347-360
    • /
    • 2015
  • Trace metals(As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn) concentrations in surface sediments of Jinhae bay in August of 2013 were measured to investigate the characteristics of trace metals distribution and to evaluate the metal pollution. Assessment for metal pollution was carried out using the sediment quality guidelines(SQGs) such as threshold effects level(TEL) and probable effects level(PEL) proposed by the ministry of onceans and fisheries(MOF) in Korea and geochemical assessment techniques(enrichment factor(EF) and geoaccumulation index ($I_{geo}$)). The mean concentration of trace metals in the sediments are as follows: 11.1 mg/kg for As, 0.52 mg/kg for Cd, 14.1 mg/kg for Co, 69.8 mg/kg for Cr, 57.2 mg/kg for Cu, 3.7 % for Fe, 0.064 mg/kg for Hg, 600 mg/kg for Mn, 40.1 mg/kg for Pb, 167.2 mg/kg for Zn. The spatial distributions of As, Co, Cr and Fe were not distinguished clearly in whole area. However, Cd, Hg, Pb and Zn were high in northern area of bay, and Cu and Mn were high in southeastern and eastern area of bay, respectively. The distribution pattern of trace metals, correlation matrix and R-mode factor analyses results revealed that the distribution of trace metals were mainly effected by the sediment grain size(Co, Cr and Fe), redox condition of sediments(Mn) and anthropogenic factors(As, Cd, Cu, Hg, Pb and Zn). Comparing the concentrations of several trace metals(As, Cd, Cr, Hg and Pb) with SQGs from Korea(TEL and PEL), the concentrations of Hg, Cd and Pb in sediment of northern area of bay were higher than TEL. EF and $I_{geo}$ values of As, Cd, Cu, Hg, Mn, Pb and Zn showed that these metals in sediments are enriched by anthropogenic activities in some areas, and pollution status for Cd, Hg and Pb in northern area and Cu in southeastern area of bay were concerned about current level, although those for As, Mn and Zn were not.

Sediment Trap Studies to Understand the Oceanic Carbon Cycling: Significance of Resuspended Sediments (퇴적물 트랩을 이용한 해양 탄소 순환 연구 동향: 재부유 퇴적물의 중요성)

  • KIM, MINKYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.145-166
    • /
    • 2021
  • For several decades, sediment traps have served as one of the key tools for constraining the biological carbon pump (BCP), a process that vertically exports particulate organic carbon (POC) and associated biogenic materials from marine primary production in surface waters to the deep ocean interior. In this paper, I introduced the general methods, the current status of global sediment trap studies, and importance of it to understand the deep ocean carbon cycling. Recent studies suggest that sinking POC in the deep ocean are more complex and spatio-temporally heterogeneous than we considered. Especially researches those studied resuspended and laterally transported particles are presented. Researches that used organic (radiocarbon; 14C) and inorganic (Al) tracers to understand the oceanic POC cycling and the significance of resuspended particles are reviewed, and the importance of radiocarbon study by using MICADAS (Mini radioCarbon Dating Systems) is emphasized.