Browse > Article
http://dx.doi.org/10.7850/jkso.2021.26.2.145

Sediment Trap Studies to Understand the Oceanic Carbon Cycling: Significance of Resuspended Sediments  

KIM, MINKYOUNG (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.26, no.2, 2021 , pp. 145-166 More about this Journal
Abstract
For several decades, sediment traps have served as one of the key tools for constraining the biological carbon pump (BCP), a process that vertically exports particulate organic carbon (POC) and associated biogenic materials from marine primary production in surface waters to the deep ocean interior. In this paper, I introduced the general methods, the current status of global sediment trap studies, and importance of it to understand the deep ocean carbon cycling. Recent studies suggest that sinking POC in the deep ocean are more complex and spatio-temporally heterogeneous than we considered. Especially researches those studied resuspended and laterally transported particles are presented. Researches that used organic (radiocarbon; 14C) and inorganic (Al) tracers to understand the oceanic POC cycling and the significance of resuspended particles are reviewed, and the importance of radiocarbon study by using MICADAS (Mini radioCarbon Dating Systems) is emphasized.
Keywords
Sediment trap; Sinking POC (Particulate Organic Carbon); Radiocarbon; Carbon cycling; Resuspended sediment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buesseler, K.O., A.M. McDonnell, O.M. Schofield, D.K. Steinberg and H.W. Ducklow, 2010. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett., 37: L22606.   DOI
2 Butman, C.A. 1986. Sediment trap biases in turbulent flows: Results from a laboratory flume study. J. Mar. Res., 44, 645-693.   DOI
3 Casacuberta, N., M. Castrillejo, A. Wefing, S. Bollhalder and L. Wacker, 2020. High Precision 14C Analysis in Small Seawater Samples. Radiocarbon, 62(1): 13-24. doi:10.1017/RDC.2019.87.   DOI
4 Cavan, E.L., A. Belcher, A. Atkinson, S.L. Hill, S. Kawaguchi, S. McCormack, B. Meyer, S. Nicol, L. Ratnarajah, K. Schmidt, D.K. Steinberg, G.A. Tarling and P.W. Boyd, 2019. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10: 4742. https://doi.org/10.1038/s41467-019-12668-7.   DOI
5 Conte, M.H., N. Ralph and E.H. Ross, 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II, 48: 1471-1505.   DOI
6 Conte, M.H. and J.C. Weber, 2014. Particle flux in the deep Sargasso Sea: The 35-year Ocean Flux Program time series. Oceanography, 27: 142-147.   DOI
7 Conte, M.H., 2019. Oceanic Particle Flux. In Cochran, J. Kirk; Bokuniewicz, J. Henry; Yager, L. Patricia (eds.) Encyclopedia of Ocean Sciences, 3rd Edition, vol. [4], pp. 192-200. Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11481-2.
8 Chang, K.I., N.G. Hogg, M.S. Suk, S.K. Byun, Y.G. Kim and K. Kim, 2002. Mean flow and variability in the southwestern East Sea. Deep Sea Res. I., 49: 2261-2279.   DOI
9 Honda, M. C. and S. Watanabe, 2010. Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys. Res. Lett., 37: L02605. doi: 10.1029/2009GL041521.   DOI
10 Honda, M.C., Y. Sasai, E. Siswanto, A. Kuwano-Yoshida, H. Aiki and M. F. Cronin, 2018. Impact of cyclonic eddies and typhoons on biogeochemistry in the oligotrophic ocean based on biogeochemical/physical/meteorological time series at station KEO. Prog. Earth Planet. Sci., 5: 42, https://doi.org/10.1186/s40645-018-0196-3.   DOI
11 Hong, G.H., M. Baskaran, H.K. Lee and S.H. Kim, 2008a. Sinking Fluxes of Particulate U-Th Radionuclides in the East Sea (Sea of Japan), J Oceanogr, 64: 267-276.   DOI
12 Blattmann, T.M., Y. Zhang, Y. Zhao, K. Wen, S. Lin, J. Li, L. Wacker, N. Haghipour, M. Plotze, Z. Liu and T.I. Eglinton, 2018a. Contrasting fates of petrogenic and biospheric carbon in the South China Sea. Geophys. Res. Lett., 45: 9077-9086.   DOI
13 Welte, C, L. Hendriks, L. Wacker, N. Haghipour, T.I. Eglinton, D. Gunther and H.A. Synal, 2018. Towards the limits: Analysis of microscale 14C samples using EA-AMS. Nucl. Inst. Meth., B 437: 66-74. doi: 10.1016/j.nimb.2018.09.046.   DOI
14 Dunbar, R.B., A.R. Leventer and W.L. Stockton, 1989. Biogenic sedimentation in McMurdo Sound, Antarctica. In: R.D. Powell and A. Elverhoi (Editors), Modern Glacimarine Environments: Glacial and Marine Controls of Modern Lithofacies and Biofacies. Mar. Geol., 85: 155-179.   DOI
15 Gehlen, M., L. Bopp, N. Emprin, O. Aumont, C. Heinze and O. Ragueneau, 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521-537.   DOI
16 Kim, H.J., H.J. Kim E.J. Yang, K.H. Cho, J.Y. Jung, S.H. Kang, K.E. Lee, S. Cho and D.S. Kim, 2021. Temporal and Spatial Variations in Particle Fluxes on the Chukchi Sea and East Siberian Sea Slopes From 2017 to 2018. Front. Mar. Sci., 7: 609748. doi: 10.3389/fmars.2020.609748   DOI
17 Yu, M., T.I. Eglinton, N. Haghipour, D.B. Montlucon, L. Wacker, Z. Wang, G. Jin and M. Zhao, 2019. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport, Geochim. Cosmochim. Acta., 262: 78-91. https://doi.org/10.1016/j.gca.2019.07.040.   DOI
18 Zhang, J., H. Li, J. Xuan, Z. Wu, Z. Yang, M.G. Wiesner and J. Chen, 2019. Enhancement of mesopelagic sinking particle fluxes due to upwelling, aerosol deposition, and monsoonal influences in the northwestern South China Sea. J. Geophys. Res. Oceans, 124: 99-112. https://doi.org/10.1029/ 2018JC014704.   DOI
19 Hwang, J., E.R.M. Druffel and T.I. Eglinton, 2010. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon contents in sinking particles. Global Biogeochem. Cycles, 24, GB4016, doi:10.1029/2010GB003802.
20 Hong, G.H., Y.I. Kim, M. Baskaran, S.H. Kim and C.S. Chung, 2008b. Distribution of 210Po and export of organic carbon from the euphotic zone in the southwestern East Sea (Sea of Japan). J Oceanogr, 64:277-292.   DOI
21 Volk, T. and M.I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strength and efficiencies of in ocean-driven circulation atmospheric CO2 changes. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. (E.T. Sundquist and W.S. Broecker, eds), Geophysical Monogr. Ser., 32, AGU, Washington, DC. pp. 99-110.
22 Kim, M., J. Hwang, T. Rho, T. Lee, D.J. Kang, K.I. Chang, S. Noh, H. Joo, J.H. Kwak, C.K. Kang and K.R. Kim, 2017. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea). J. Mar. Sys., 167: 33-42.   DOI
23 Lee, C., D.W. Murray, R.T. Barber, K.O. Buesseler, J. Dymond, J. Hedges, S. Honjo, S.J. Manganini, J. Marra, C. Moser, M.L. Peterson, W.L. Prell and S. Wakeham, 1998. Particulate organic carbon fluxes: compilation of results from the 1995 U.S. JGOFS Arabian Sea Process Study. Deep-Sea Res. II, 45: 2489-2501.   DOI
24 Ruff, M., S. Fahrni, H.W. Gaggeler, I. Hajdas, M. Suter, H.A. Synal, S. Szidat and L. Wacker, 2010. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon, 52(4): 1645-56.   DOI
25 Gust, G., W. Bowles, S. Giordano and M. Huettel. 1996. Particle accumulation in a cylindrical sediment trap under laminar and turbulent steady flow, An experimental approach. Aquatic Sci., 58: 297-326.   DOI
26 Sabine, C.L. and R.A. Feely, 2007. The oceanic sink for carbon dioxide, Greenhouse Gas Sinks, Eds, CABI, 31-49 pp.
27 Sano, M., R. Makabe, N. Kurosawa, M. Moteki and T. Odate, 2020. Effects of Lugol's iodine on long-term preservation of marine plankton samples for molecular and stable carbon and nitrogen isotope analyses. Limnol. Oceanogr. Methods, 18(11): 635-643. https://doi.org/10.1002/lom3.10390.   DOI
28 Honjo, S., S.J. Manganini, R.A. Krishfield, R. Francois, 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Progr. Oceanogr, 76: 217-285.   DOI
29 Honjo, S.J.F. Connell and P.L. Sachs, 1980. Deep-ocean sediment trap; design and function of PARFLUX Mark II. Deep-Sea Res. I. 27(9): 745-753. doi:10.1016/0198-0149(80)90026-6.   DOI
30 Honjo, S., S.J. Manganini and J.J. Cole, 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res. I. 29: 609-625.   DOI
31 Honjo, S., R. Francois, S.J. Manganini, J. Dymond and R. Collier, 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Res. II., 47: 3521-3548.   DOI
32 Wong, C.S., F.A. Whitney, D.W. Crawford, K. Iseki, R.J. Matear, W.K. Johnson, J.S. Page and D. Timothy, 1999. Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982-1993: relationship to changes in subarctic primary productivity, Deep-Sea Res. II, 46(11-12): 2735-2760, https://doi.org/10.1016/S0967-0645(99)00082-X.   DOI
33 Sherrell, R.M., Field M.P. and Y. Gao, 1998. Temporal variability of suspended mass and composition in the Northeast Pacific water column: relationships to sinking flux and lateral advection. Deep-Sea Res. II, 45: 733-761.   DOI
34 Schuur, E.A.G., E.R.M. Druffel and S.E. Trumbore, 2016. Radiocarbon and climate change: Mechanisms, applications and laboratory techniques. Springer. 315 pp.
35 Siegel, D.A., K.O. Buesseler, S.C. Doney, S.F. Sailley, M.J. Behrenfeld and P.W. Boyd, 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles, 28: 181-196.   DOI
36 Sigman, D.M. and G.H. Haug, 2003. The biological pump in the past. In Treatise In Geochemistry, 6: 491-528.   DOI
37 Sherman, A.D. and K.L. Smith Jr. 2009. Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy. Deep-Sea Res. II, 56: 1754-1762. https://doi.org/10.1016/j.dsr2.2009.05.020.   DOI
38 Smith, K.L., Jr. and E.R.M. Druffel. 1998. Long time-series monitoring of an abyssal site in the NE Pacific: An introduction. Deep-Sea Res. II, 45: 573-586. https://doi.org/10.1016/S0967-0645(97)00094-5.   DOI
39 Honda, M.C., 2020. Effective Vertical Transport of Particulate Organic Carbon in the Western North Pacific Subarctic Region. Front. Earth Sci., 8: 366. doi:10.3389/feart.2020.00366.   DOI
40 Hwang, J., S.J. Manganini, D.B. Montlucon and T.I. Eglinton, 2009. Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56: 1792-1803.   DOI
41 Ishikawa, N.F., Y. Itahashi, T.M. Blattmann, Y. Takano, N.O. Ogawa, M. Yamane, Y. Yokoyama, T. Nagata, M. Yoneda, N. Haghipour, T.I. Eglinton and N. Ohkouchi, 2018. Improved Method for Isolation and Purification of Underivatized Amino Acids for Radiocarbon Analysis. Anal. Chem., 90(20): 12035-12041.   DOI
42 Lee, S.H. 2012. The Amundsen Sea Expedition 2012 (ANA02C): IBRV Araon, 31 January 2012-20 March 2012. Korea Polar Research Institute, Incheon. 140 p.
43 Lin, B., Z. Liu, T.I. Eglinton, S. Kandasamy, T.M. Blattmann, M. Haghipour and G.J. de Lange, 2019. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China. Geochim. Cosmochim. Acta., 259: 270-287. https://doi.org/10.1016/j.gca.2019.06.018.   DOI
44 Wacker, L., G. Bonani, M. Friedrich, I. Hajdas, B. Kromer, M. Nemec, M. Ruff, M. Suter, H.A. Synal and C. Vockenhuber, 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon, 52: 252-262.   DOI
45 Lee, C., J.I. Hedges, S.G. Wakeham and Z. Ningli, 1992. Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnol Oceanogr, 37:117-130.   DOI
46 Le Moigne, F.A.C., K. Pabortsava, C.L.J. Marcinko, P. Martin and R.J. Sanders, 2014. Where is mineral ballast important for surface export of particulate organic carbon in the ocean? Geophys. Res. Lett., 41: 8460-8468.   DOI
47 Levin, I. and V. Hesshaimer, 2000. Radiocarbon-a unique tracer of global carbon cycle dynamics. Radiocarbon, 42: 69-80.   DOI
48 Lima, I.D., P.J. Lam and S.C. Doney, 2014. Dynamics of particulate carbon flux in a global ocean. Biogeosci., 11: 1177-1198.   DOI
49 Lutz, M., Dunbar R. and K. Caldeira, 2002. Ragional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem. Cycles, 16(3). https://doi.org/10.1029/2000GB001383.   DOI
50 Eglinton, T.I., G. Eglinton, L. Dupont, E.R. Sholkovitz, D. Montlucon, C.M. Reddy, 2002. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem., Geophys., Geosyst., 3. doi:10.1029/2001GC000269.   DOI
51 Toggweiler, J.R., E.R.M. Druffel, R.M. Key and E.D. Galbraith, 2019. Upwelling in the Ocean Basins North of the ACC: 1. On the Upwelling Exposed by the Surface Distribution of Δ14C. J. Geophys. Res. Oceans, 124: 2591-2608.   DOI
52 Honjo, S., T.I. Eglinton, C.D. Taylor, K.M. Ulmer, S.M. Sievert, A. Bracher, C.R. German, V. Edgcomb, R. Francois, M.D. Iglesias-Rodriguez, B. voan Mooy and D.J. Repeta, 2014. Understanding the Role of the Biological Pump in the Global Carbon Cycle: An Imperative for Ocean Science. Oceanography, 27(3):10-16.   DOI
53 Hwang, J., E.R.M. Druffel, S. Griffin, K.L. Smith Jr., R.J. Baldwin and J.E. Bauer, 2004. Temporal variability of Δ14C, δ13C, and C/N in sinking particulate organic matter at a deep time series station in the northeast Pacific Ocean, Global Biogeochem. Cycles, 18, GB4015, doi:10.1029/2004GB002221.   DOI
54 Hwang, J., T.I. Eglinton, R.A. Krishfield and S.J. Manganini, 2008. Lateral organic carbon supply to the deep Canada Basin. Geophys. Res. Lett., 35: L11607.   DOI
55 Bauer, J.E. and E.R.M. Druffel, 1998. Ocean margins as a significant source of organic matter to the deep ocean. Nature, 392: 482-484.   DOI
56 Marsay, C.M., R.J. Sanders, S.A. Henson, K. Pabortsava, E.P. Achterberg and R.S. Lampitt, 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Nat. Acad. Sci., 112: 1089-1094.   DOI
57 McDonnell, A.M.P. and K.O. Buesseler, 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr, 55: 2085-2096.   DOI
58 Baker, C.A., M.L. Estapa, M. Iversen, R. Lampitt and K. Buesseler, 2020. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progress in Oceanography, 184: 102317. https://doi.org/10.1016/j.pocean.2020.102317.   DOI
59 Berelson, W.M., 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II, 49: 237-251.   DOI
60 Miquel, J.C., J. Martin, B. Gasser, A.R. Baena; T. Toubal and S.W. Fowler, 2011. Dynamics of particle flux and carbon export in the northwestern Mediterranean Sea: A two decade time-series study at the DYFAMED site. Prog. Oceanogr, 91(4): 461-481. doi:10.1016/j.pocean.2011.07.018.   DOI
61 Montes, E., F. Muller-Karger, R. Thunell, D. Hollander, Y. Astor, R. Varela, I. Soto, Lorenzoni, 2012. Vertical fluxes of particulate biogenic material through the euphotic and twilight zones in the Cariaco Basin, Venezuela. Deep-Sea Res. I, 67: 73-84.   DOI
62 Muller-Karger, F.E., Y.M. Astor, C.R. Benitez-Nelson, K.N. Buck, K.A. Fanning, L. Lorenzoni, E. Montes, D.T. Rueda-Roa, M.I. Scranton, E. Tappa, G.T. Taylor, R.C. Thunell, L. Troccoli and R. Varela, 2019. The scientific legacy of the CARIACO ocean time-series program. Ann. Rev. Mar. Sci., 11: 413-437.   DOI
63 Huffard, C.L., C.A. Durkin, S.E.Wilson, P.R. McGill, R. Henthorn and K.L. Smith, 2020. Temporally-resolved mechanisms of deep-ocean particle flux and impact on the seafloor carbon cycle in the northeast Pacific. Deep-Sea Res. II, 173: 104763. doi:10.1016/j.dsr2.2020.104763.   DOI
64 Hwang, J., M. Kim, S.J. Manganini, C.P. McIntyre, N. Haghipour, J.J. Park, R.A. Krishfield, R.W. Macdonald, F.A. McLaughlin and T.I. Eglinton, 2015. Temporal and spatial variability of particle transport in the deep Arctic Canada Basin. J. Geophys. Res. Oceans, 120: 2784-2799, doi:10.1002/2014JC010643.   DOI
65 Hwang, J., S.J. Manganini, J. Park, D.B. Montlucon, J.M. Toole and T.I. Eglinton, 2017. Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin. J. Geophys. Res. Oceans, 122: 4539-4553. doi:10.1002/2016JC012549.   DOI
66 Hwang, J., J. Blusztajn, L. Giosan, M. Kim, S.J. Manganini, D.B. Montlucon, J.M. Toole and T.I. Eglinton, 2020. Lithogenic particle transport trajectories on the northwest Atlantic margin J. Geophys. Res. Oceans, 126(1). https://doi.org/10.1029/2020JC016802.   DOI
67 Riley, J.S., R. Sanders, C. Marsay, F.A.C. Le Moigne, E.P. Achterberg and A.J. Poulton, 2012. The relative contribution of fast and slow sinking particles to the ocean carbon export. Global Biogeochem. Cycles, 26: GB1026.
68 Noh, S. and S. Nam, 2018. Data from: EC1, mooring time-series since 1996. SEANOE. doi: 10.17882/58134.   DOI
69 Ran, L., J. Chen, M.G. Wiesner, Z. Ling, N. Lahajnar, Z. Yang, H. Li, Q. Hao and K. Wang, 2015. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: Results from time-series moored sediment traps. Deep Sea Res.-II, 122: 15-24.   DOI
70 Ridgewell, A. and S. Arndt, 2015. Why dissolved organics matter: DOC in ancient oceans and past climate change. In Biogeochemistry of Marine Dissolved Organic Matter (Eds.2), 1-19. Elsevier.
71 Cram, J.A., T. Weber, S.W. Leung, A.M.P. McDonnell, J.H. Liang and C. Deutsch, 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles, 32: 858-876.   DOI
72 Cummins, P.F. and G.S.E. Lagerloef, 2004. Wind-driven interannual variability over the northeast Pacific Ocean. Deep-Sea Res. I., 51: 2105-2121.   DOI
73 Dickens, A.F., J.A. Baldock, R.J. Smernik, S.G. Wakeham, T.A. Arnarson, Y. Gelinas and J.I. Hedges, 2006. Solid state 13C NMR analysis of size and density fractions of marine sediments. Insights into carbon sources and preservation mechanisms. Geochim. Cosmochim. Acta., 70: 666-686.   DOI
74 Kim, M., E.J. Yang, D. Kim, J.H. Jeong, H.J. Kim, J. Park, J. Jung, H.W. Ducklow, S. Lee and J. Hwang, 2019a. Sinking particle flux and composition and three sites of different annual sea ice cover in the Amundsen Sea, Antarctica. J. Mar. Sys., 192: 42-50.   DOI
75 Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring and J. Turnbull, 2004. 14C Activity and global carbon cycle changes over the past 50000 years, Science, 303: 202- 207, doi:10.1126/science.1090300.   DOI
76 IPCC, W., 2013. Climate Change 2013: The Physical Science Basis. (T. F. Stocker, D. Qin, G.-K. Plattner, M. B. Tignor, S. K. Allen, J. Boschung, et al., Eds.) Contribution of Working Group I to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1-1552 pp.
77 Druffel, E.R.M. and P.M. Williams, 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347: 172-174.   DOI
78 Ducklow, H.W., M. Erickson, J. Kelly, M. Montes-Hugo, C.A. Ribic, R.C. Smith, S.E. Stammerjohn, D.M. Karl, 2008. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992-2006. Deep Sea Res., Part II, 55: 2118-2131.   DOI
79 Kim, M., J. Hwang, H.J. Kim, D. Kim, E.J. Yang, H.W. Ducklow, S. La, S.H. Lee, J. Park and S. Lee, 2015. Sinking particle flux in the sea ice zone of the Amundsen shelf, Antarctica, Deep-Sea Res.-I, 101: 110-117.   DOI
80 Jacobsen, S.B. and G.J. Wasserburg, 1980. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett., 50: 139-155.   DOI
81 Jeandel, C., T. Arsouze, F. Lacan, P. Techine and J.C. Dutay, 2007. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins, Chem. Geol., 239:156-164.   DOI
82 Goldstein, S.L. and S.R. Hemming, 2003. Long-lived isotopic tracers in oceanography, paleoceanography and ice-sheet dynamics, in The oceans and marine geochemistry, edited by H. Elderfield, pp. 453-489, Ensevier, New York.
83 Knap, A., A. Michaels, A. Close, H.W. Ducklow and A. Dickson, 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. JGOFS Report Nr., 19: 155-162.
84 Kim, M., E.J. Yang, H.J. Kim, D. Kim, T.W. Kim, H.S. La, S.H. Lee and J. Hwang, 2019b. Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica Biogeosciences, 16: 2683-2691.   DOI
85 Kim, M., J. Hwang, T.I. Eglinton and E.R.M. Druffel, 2020a. Lateral particle supply as a key vector in the oceanic carbon cycle, Global Biogeochem. Cycles, 34. https://doi.org/10.1029/2020GB006544.   DOI
86 Kim, M., Y.I. Kim, J. Hwang, K.Y. Choi, C.J. Kim, Y. Ryu, J.E. Park, K.A. Park, J.H. Park, S. Nam, N. Haghipour and T.I. Eglinton, 2020b. Influence of sediment resuspension on the biological pump of the southwestern East Sea (Japan Sea), Front. Earth Sci. 8(144). DOI: 10.3389/feart.2020.00144.   DOI
87 Lam, P. J., S.C. Doney and J.K. Bishop, 2011. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob. Biogeochem. Cy., 25. doi.org/10.1029/2010GB003868.
88 Le Bras, L.A., S.R. Jayne and J.M. Toole, 2018. The interaction of recirculation gyres and a deep boundary current, J. Phys. Oceanogr, 48: 573-590. doi: 10.1175/JPO-D-17-0206.1.   DOI
89 Ducklow, H.W., M. Erickson, S. Lee, K. Lowry, A. Post, R. Sherrell, S. Stammerjohn, S. Wilson and P. Yager, 2015. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa 3, 000046. https://doi.org/10.12952/journal.elementa.000046.   DOI
90 Dunne, J.P., J.L. Sarmiento and A. Gnanadesikan, 2007. A synthesis of particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21 GB 4006.
91 Herndl, G.J. and T. Reinthaler, 2013. Microbial control of the dark end of the biological pump. Nature Geosci., 6: 718-724.   DOI
92 Knauer, G.A., D.M. Karl, J.H. Martin and C.N. Hunter, 1984. In situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps. J Mar Res, 42: 445-462.   DOI
93 Smith, K.L., Jr., A.D. Sherman, P.R. McGill, R.G. Henthorn, J. Ferreira, and C.L. Huffard, 2017. Evolution of monitoring an abyssal time- series station in the northeast Pacific over 28 years. Oceanography, 30(4): 72-81, https://doi.org/10.5670/oceanog.2017.425.   DOI
94 황점식, 2012. 방사성탄소를 이용한 해양 유기탄소 순환 연구 동향. 한국해양학회지 「바다」, 17(3): 189-201.
95 권은영, 조양기, 2013. 해양 생물 펌프가 대기 중 이산화탄소에 미치는 영향 그리고 기후 변동과의 연관성. 한국해양학회지 「바다」, 18(4): 266-276.
96 김형직, 김동선, 형기성, 김경홍, 손주원, 황상철, 지상범, 김기현, 김부근, 2008. 북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동. 한국해양학회지 「바다」, 13(3): 200-209.
97 석문식, 2002. 동해 기후변동 예측 연구 2차연도 연차보고서. 한국해양연구원 BSPE 817-00-1319-1.
98 Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo and S.G. Wakeham, 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research II, 49: 219-236.
99 Anderson, R.F., G.T. Rowe, P.F. Kemp, S. Trumbore and P.E. Biscaye, 1994. Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res.-II, 41: 669-703.
100 Estapa, M., J. Valdes, K. Tradd, J. Sugar, M. Omand and K. Buesseler, 2020. The Neutrally Buoyant Sediment Trap: Two Decades of Progress. J. Atmos. Oceanic Technol., 37: 957-973, https://doi.org/10.1175/JTECH-D-19-0118.1.   DOI
101 Feng, X, O. Gustafsson, R.M. Holmes, J.E, Vonk, B.E. van Dongen, I.P. Semiletov, O.V. Dudarev, M.B. Yunker, R.W. Macdonald, L. Wacker, D.B. Montlucon, T.I. Eglinton, 2015. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. Global Biogeochem. Cycles doi: 10.1002/2015GB005204.   DOI
102 Fischer, G, G. Wefer, O. Romero, N. Dittert, V. Ratmeyer, B. Donner, 2003. Transfer of particles into the deep Atlantic and global ocean: Control of nutrient supply and ballast production. In: The South Atlantic in the Late Quaternary: Reconstruction of material budgets and current systems (Eds. G. Wefer, S. Mulitza and V. Ratmeyer), pp 21-46. Springer-Verlag.
103 Forest, A., S. Belanger, M. Sampei, H. Sasaki, C. Lalande and L. Fortier, 2010. Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): satellite observations and sediment trap measurements. Deep Sea Res. Part I, 57: 125-142. doi: 10.1016/j.dsr.2009.10.002.   DOI
104 Francois, R, S. Honjo, R. Krishfield, S.J. Manganini, 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochem. Cycles, 16: 1087. doi:1010.1029/2001GB001722.   DOI
105 Bao, R., T.M. Blattmann, C. McIntyre, M. Zhao and T.I. Eglinton, 2019. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth Planet. Sci. Lett., 505: 76-85.   DOI
106 Anderson, N.D., K.A. Donohue, M.C. Honda, M.F. Cronin and D. Zhang, 2020. Challenges of Measuring Abyssal Temperature and Salinity at the Kuroshio Extension Observatory. J. Atmos. Ocean. Technol., 37(11): 1999-2014. https://doi.org/10.1175/JTECH-D-19-0153.1.   DOI
107 Andres, M., J.M. Toole, D.J. Torres, W. M. Smethie Jr., T.M. Joyce and R.G. Curry, 2016. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W. Deep-sea Res. I, 109: 10-26.   DOI
108 Bao, R., C. McIntyre, M. Zhao, C. Zhu, S.J. Kao and T.I. Eglinton, 2016. Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology, 44: 791-794.   DOI
109 Bale, A.J. 1998. Sediment trap performance in tidal waters: comparison of cylindrical and conical collectors. Cont. Shelf Res., 18(11): 0-1418. doi:10.1016/s0278-4343(98)00050-8.   DOI
110 Giering, S.L.C., R. Sanders, R.S. Lampitt, T.R. Anderson, C. Tamburini, M. Boutrif, M.V. Zubkov, C.M. Marsay, S.A. Henson, K. Saw, K. Cook and D.J. Mayor, 2014. Reconciliation of the carbon budget in the ocean's twilight zone. Nature, 507(7493): 480-483.   DOI
111 Gardner, W.D., 2000. Sediment trap sampling in surface waters. The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study, pp. 240-284.
112 McIntyre, C.P., L. Wacker, N. Haghipour, T.M. Blattmann, S. Fahrni, M. Usman, T.I. Eglinton and H.A. Synal, 2017. Online 13C and 14C gas measurements by EA-IRMS-AMS at ETH Zurich. Radiocarbon, 59: 893-903.   DOI
113 Ramaswamy, V. and B. Gaye, 2006. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Res.-I, 53(2): 271-293, https://doi.org/10.1016/j.dsr.2005.11.003.   DOI
114 Turich, C., S. Schouten, R. C. Thunell, R. Varela, Y. Astor and S.G. Wakeham, 2013, Comparison of TEX86 and U37K' temperature proxies in sinking particles in the Cariaco Basin, Deep-Sea Res. I., 78: 115-133. https://doi.org/10.1016/j.dsr.2013.02.008.   DOI
115 McNichol, A.P. and L.I. Aluwihare, 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev., 107: 433-466.
116 Gardner, W.D. 1980. Sediment trap dynamics and calibration, a laboratory evaluation. J. Mar. Res., 38: 17-39.
117 Gardner, W.D., M.J. Richardson and A.V. Mishonov, 2018. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth Planet. Sci. Lett., 482: 126-144.   DOI
118 Jurg, B., 1996. Towards a new generation of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: A hydrodynamical protocol. Aquat. Sci., 58(4): 283-296.   DOI
119 Gies, H., F. Hagedorn, M. Lupker, D. Montlucon, N. Haghipour, T.S. van der Voort and T.I. Eglinton, 2021. Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass, Biogeosciences, 18: 189-205. https://doi.org/10.5194/bg-18-189-2021.   DOI
120 Godwin, H., 1962. Radiocarbon dating. Nature, 195: 943-945.   DOI
121 Goni, M.A., M.B. Yunker, R.W. Macdonald and T.I. Eglinton, 2005. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar. Chem. 93: 53-73.   DOI
122 Haghipour, N., B. Ausin, M.O. Usman, N. Ishikawa, L. Wacker, C. Welte, K. Ueda and T.I. Eglinton, 2019. Compound-Specific Radiocarbon Analysis by Elemental Analyzer-Accelerator Mass Spectrometry: Precision and Limitations. Anal. Chem., 91: 2042-2049. doi: 10.1021/acs.analchem.8b04491.   DOI
123 Goto, N., K. Hisamatsu, C. Yoshimizu and S. Ban, 2016. Effectiveness of preservatives and poisons on sediment trap material in freshwater environments. Limnology, 17: 87-94, https://doi.org/10.1007/s10201-015-0467-2.   DOI
124 Graven, H., 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Nat. Acad. Sci., 112: 9542-9545.   DOI
125 Grousset, F.E., F. Henry, J.F. Minster and A. Monaco, 1990. Nd isotopes as tracers in water column particles: the western Mediterranean Sea. Mar. Chem., 30: 389-407.   DOI
126 Hanke, U.M., L. Wacker, N. Haghipour, M.W. Schmidt, T.I. Eglinton and C.P. McIntyre, 2017. Comprehensive Radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples. Radiocarbon, 59(4): 1103-1116. doi:10.1017/RDC.2017.44.   DOI
127 Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, B.V. Valdes J, Mooy and S. Wilson, 2007a. Revisiting carbon flux through the ocean's twilight zone. Science, 316: 567-570.   DOI
128 Taylor, S.R. and S.M. McLennan, 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Sci.
129 Synal, H.A., M. Stocker and M. Suter, 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259: 7-13.
130 Peterson, M.L., J. Fabres, S.G. Wakeham, C. Lee, I.J. Alonso and J.C. Miquel, 2009. Sampling the vertical particle flux in the upper water column using a large diameter free-drifting NetTrap adapted to an Indented Rotating Sphere sediment trap Deep-Sea Res. Part II, 56(18): 1547-1557, 10.1016/j.dsr2.2008.12.020.   DOI
131 van der Voort, T.S., T.M. Blattmann, M. Usman, D.B. Montlucon, T. Loeffler, M.L. Tavagna, N. Gruber N and T.I. Eglinton, in review, 2020. MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): A (radio) carbon-centric database for seafloor surficial sediments, Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2020-199.   DOI
132 Blattmann, T.M, M. Wessels, C. McIntyre and T.I. Eglinton, 2018b. Projections for Future Radiocarbon Content in Dissolved Inorganic Carbon in Hardwater Lakes: A Retrospective Approach. Radiocarbon, 60(3): 791-800. doi:10.1017/RDC.2018.12.   DOI
133 Harms, N.C., N. Lahajnar, B. Gaye, T. Rixen, U. Schwarz-Schampera and K.C Emeis, 2021. Sediment trap-derived particulate matter fluxes in the oligotrophic subtropical gyre of the South Indian Ocean, Deep Sea Res.-II, 104924, doi.org/10.1016/j.dsr2.2020.104924.   DOI
134 Hedges, J.I., J.A. Baldock, Y. Gelinas, C. Lee, M. Peterson, M. and S.G. Wakeham, 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature, 409, 801-804.   DOI
135 Thomsen, L., J. Aguzzi, C. Costa, F. De Leo, A. Ogston and A. Purser, 2017. The oceanic biological pump: Rapid carbon transfer to depth at continental margins during winter. Sci. Rep., 7: 10763.   DOI
136 Thunell, R.C.,1998. Seasonal and annual variability in particle fluxes in the Gulf of California: a response to climate forcing. Deep-Sea Res. I, 45: 2059-2083.   DOI
137 Timothy, D.A., C.S. Wong, J.E. Barwell-Clarke, J.S. Page, L.A. White and R.W. Macdonald, 2013. Climatology of sediment flux and composition in the subarctic Northeast Pacific Ocean with biogeochemical implications. Prog. Oceanogr, 116: 95-129.   DOI
138 Toole, J.M., R.G. Curry, T.M. Joyce, M. McCarthy and B. Pena-Molino, 2011. Transport of the North Atlantic Deep Western Boundary Current about 398N, 708W: 2004-2008, Deep Sea Res., Part II, 58: 1768-1780.   DOI
139 Kelly, T.B., P.C. Davison, R. Goericke, M.R. Landry, M.D. Ohman and M.R. Stukel, 2019. The Importance of Mesozoo-plankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web. Front. Mar. Sci., 6(508). doi:10.3389/fmars.2019.00508.   DOI
140 Jonell, T.N., Y. Li, J. Blusztajn, L. Giosan and P.D. Clift, 2018. Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance, Chem. Geol., 485: 56-73.   DOI
141 Kim, D., J.H. Jeong, T.W. Kim, J.H. Noh, H.J. Kim, D.H. Choi, E. Kim and D. Jeon, 2017. The reduction in the biomass of cyanobacterial N2 fixer and the biological pump in the Northwestern Pacific Ocean. Sci. Rep., 7: 41810. doi:10.1038/srep41810.   DOI
142 Kim, H.J., D. Kim, C.M. Yoo, S.B. Chi, B.K. Khim, H.R. Shin and K. Hyeong, 2011. Influence of ENSO variability on sinking-particle fluxes in the northeastern equatorial Pacific. Deep-Sea Res.-I, 58(8): 865-874. doi:10.1016/j.dsr.2011.06.007.   DOI
143 Wacker, L., S.M. Fahrni, I. Hajdas, M. Molnar, H.A. Synal, S. Szidat and Y.L. Zhang, 2013. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instr. Meth. Phys. Res. B-Beam Interactions with Materials and Atoms, 294: 315-319.   DOI
144 Walsh, J.J., D.A. Dieterle, F.E. Muller-Karger, R. Bohrer, W.P. Bissett, R.J. Varela, R. Aparicio, R. Diaz, R. Thunell, G.T. Taylor, M.I. Scranton, K.A. Fanning and E.T. Peltzer, 1999. Simulation of carbon-nitrogen cycling during Spring upwelling in the Cariaco Basin. J. Geophys. Res. Oceans, 104: 7807-7825.   DOI
145 Wakeham, S.G., J.I. Hedges, C. Lee, P.J. Hernes and M.L. Peterson, 1993. Effects of poisons and preservatives on the fluxes and elemental compositions of sediment trap material. J. Mar. Res., 51: 651-668.   DOI
146 Wakeham, S.G. and A.P. McNichol, 2014. Transfer of organic carbon through marine water columns to sediments - insights from stable and radiocarbon isotopes of lipid biomarkers. Biogeosci, 11: 6895-6914.   DOI
147 Hegner, E., H.J. Dauelsberg, M.M.R. van der Loeff, C. Jeandel and H.J.W. de Baar, 2007. Nd isotopic constraints on the origin of suspended particles in the Atlantic Sector of the Southern Ocean, Geochem., Geophys., Geosyst., 8, Q10008, doi:10.1029/2007GC001666.   DOI
148 Heussner, S., C. Ratti and J. Carbonne, 1990. The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment. Cont. Shelf Res., 10(9-11): 943-958. doi:10.1016/0278-4343(90)90069-X.   DOI
149 Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochem. Cycles, 10: 71-88.   DOI
150 Wakeham, S.G., E.A. Canuel, E.J. Lerberg, P. Mason, T.P. Sampere, T.S. Bianchi, 2009. Partitioning of organic matter in continental margin sediments among density fractions. Mar. Chem., 115(3-4): 211-225.   DOI
151 Blattmann, T.M., Z. Liu, Y. Zhang, Y. Zhao, N. Haghipour, D. B. Montlucon, M. Plotze and T. I. Eglinton, 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science, 366: 742-745.   DOI
152 Bock, M.J. and L.M. Mayer, 2000. Mesodensity organo-clay associations in a nearshore sediment. Mar. Geol. 163: 65-75.   DOI
153 Buesseler K.O., 1991. Do upper-ocean sediment traps provide an accurate record of particle flux?. Nature, 353(6343): 420-423. 10.1038/353420a0.   DOI
154 Kim, H.J., K. Hyeong, J.Y. Park, J.H. Jeong, D. Jeon, E. Kim and D. Kim, 2014. Influence of Asian monsoon and ENSO events on particle fluxes in the western subtropical Pacific. Deep-Sea Res.-I, 90: 139-151. doi:10.1016/j.dsr.2014.05.002.   DOI
155 Kim, H.J, T.W. Kim, K. Hyeong, S.W. Yeh, J.Y. Park, C.M. Yoo and J. Hwang, 2019. Suppressed CO2 outgassing by an enhanced biological pump in the Eastern Tropical Pacific. J. Geophys. Res., 124: 7962-7973. doi: 10.1029/2019JC015287.   DOI
156 Buesseler, K.O., A.N. Antia, M. Chen, S.W. Fowler, W.D. Gardner, O. Gustafsson, K. Harada, A.F. Michaels, M. Rutgers van der Loeff, M. Sarin, D.K. Steinberg and T. Trull, 2007b. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res., 65: 345-416.   DOI
157 Honda, M.C., M. Kusakabe, S. Nakabayashi and M. Katagiri, 2000. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope. Mar. Chem., 68: 231-247.   DOI