• Title/Summary/Keyword: Mariculture management

Search Result 16, Processing Time 0.029 seconds

Survival and Physiological Responses of the Tunicate Halocynthia roretzi to Salinity Changes (염분변화에 따른 멍게 Halocynthia roretzi의 생존과 생리적 반응)

  • Shin, Yun-Kyung;Choi, Nack-Joong;Hur, Young-Baek;Han, Hyoung-Kyun;Park, Jeong-Heum;Kim, Yoon
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2007
  • We investigated survival and osmolarity, oxygen consumption, amonia extetion and filtration rates associated with physiological responses of the tunicate Halocynthia roretzi salinity changes. Acclimation times for osmolatity in different salinities took $20{\sim}26$ hours in 60% SW (19.8 psu) and $20{\sim}25$ hours in 80% SW (26.4 psu), while their times took $7{\sim}8$ hours in 110% SW (36.3 psu). Accordingly, acclimation times for high salinities were faster than those for low salinities. Survival (%) was more than 80% at salinity over 26.4 psu, and 6 $days-LS_{50}$ was 25.4 psu. physiological responses such as oxygen consumption, amonia excretion and filtration rates of H. roretzi showed more clear reactions in the longer exposure period (four days after exposure) than that in the beginning of the exposure. To sum up the results, the tunicate might be stressed from the beginning of the exposure in low salinity.

Gonadal Development and Reproductive Cycle of the Ark shell Scapharca subcrenata (Bivalvia: Arcidae) from Yeoja Bay (여자만 새꼬막 Scapharca subcrenata의 생식소 발달과 생식주기)

  • Kim, Sung-Yeon;Shin, Yun-Kyung;Lim, Han-Kue;Lee, Won-Chan
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.252-258
    • /
    • 2008
  • Gonadal development and reproductive cycle of the ark shell Scarpharca subcrenata were investigated by histological observations. Samples were collected monthly from March 2007 to February 2008 in the Yeoja Bay, Yeosu, Jeollanam-do, Korea. S. subcrenata was dioecious. The gonads consist of a number of oogenic follicle and acinus. Monthly changes in the gonad index reached a maximum in June and a minimum in September. Monthly changes in the condition index reached a maximum in April and a minimum in September. The reproductive cycle of this species can be divided into five successive stages: early active stage (January to April), late active stage (March to June), ripe stage (May to August), spent stage (July to September) and recovery and resting stage (September to March). The main spawning of S. subcrenata occurred in July and August in Yeoja Bay. The sex ratio of female to male was not significantly different from 1:1.

Egg Development and Morphological Change of Larvae and Juveniles of the Starry Flounder, Platichthys stellatus (강도다리, Platichthys stellatus의 난발생과 자치어의 형태발달)

  • Byun, Soon-Gyu;Lee, Bae-Ik;Lee, Jong-Ha;Ku, Hak-Dong;Park, Sang-Un;Yun, Seong-Min;Hwang, Seon-Young;Kim, Yi-Cheong;Han, Hyung-Gyun
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.350-359
    • /
    • 2007
  • The egg development and morphological change of larvae and juveniles of the starry flounder, Platichthys stellatus were observed in laboratory. Fertilized eggs of the species, 1.09~1.19 mm (mean $1.13{\pm}0.03mm$, n=50) in diameter, were floating, colorless, transparent in shape and lacked in oil globules. The eggs hatched out 121 hours after fertilization at water temperature $8.2{\sim}11.2^{\circ}C$. The size of the hatched larvae were 2.58~2.89 mm (mean $2.67{\pm}0.09mm$) in total length, their mouth and anus were not open yet and myotome number was 14+27=41. Melanophore and xanthophore appeared on the notochord and digestive organ and the margin of membrane fin, on the yolk sac and eyes were lacking in pigment cells. 5 days after hatching the larvae attained 4.30~4.97 mm (mean$4.74{\pm}0.21mm$) in TL, and their mouth and anus were open. 10 days after hatching the larvae transformed to postlarval stage and they were 4.67~5.75 mm in TL (mean $5.30{\pm}0.31mm$), and absorbing the yolk completely. Feeding activity increased as the mouth became larger. At 23 days, the larvae attained 6.69~8.82 mm in TL (mean $7.85{\pm}0.75mm$), and the right eye was started moving to the left side of the head. At 52 days, the juveniles attained 10.99~17.06 mm in TL (mean $13.50{\pm}1.67mm$). The right eye was moved completely onto the left side. All of the fins had completed set of the fin rays (D. 64~67: A. 45~51: P. 11: V. 6: C. 19).

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

Gonadal Development and Reproductive Cycle of the Granular Ark Tegillarca granosa (Bivalvia: Arcidae) (꼬막 Tegillarca granosa의 생식소 발달과 생식주기)

  • Kim, Sung-Yeon;Moon, Tae-Seok;Shin, Yun-Kyung;Park, Mi-Seon
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.34-41
    • /
    • 2009
  • Gonadal development and reproductive cycle of the granular ark Tegillarca granosa were investigated by histological observations. Samples were collected monthly from January to Decemberry 2002 in the Yeoja Bay of Yeosu, Jeollanam-do, Korea. T. granosa was dioecious. The gonads consist of a number of oogenic follicle and acinus. Monthly changes in the gonad index reached a maximum in June and a minimum in August. Monthly changes in the condition index reached a maximum in July and a minimum in September. The reproductive cycle of this species can be divided into five successive stages: early active stage (March to May), late active stage (April to June), ripe stage (May to July), spent stage (July to August) and recovery and resting stage (September to March). The spawning of T. granosa occurred in July and August in Yeoja Bay. The sex ratio of female to male was not significantly different from 1:1.

Effects of Water Temperature on Oxygen Consumption in Starry Flounder Platichthys stellatus Reared in Seawater and Freshwater (해수 및 담수사육 강도다리 Platichthys stellatus의 산소소비에 미치는 수온의 영향)

  • Jeong, Min-Hwan;Byun, Soon-Gyu;Lim, Han-Kyu;Min, Byung-Hwa;Kim, Young-Soo;Chang, Young-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.285-291
    • /
    • 2009
  • The effects of water temperature on oxygen consumption (OC) of starry flounder Platichthys stellatus reared in seawater (SW) and freshwater (FW) was performed in closed water-recirculating system containing respiratory chamber. Fish acclimated in separate indoor tanks with SW (nine of fish used, $263.0{\pm}40.4$ g) or FW (nine of fish used, $265.8{\pm}34.8$ g) were sampled. The OC of starry flounder at $15^{\circ}C,\;20^{\circ}C$ and $25^{\circ}C$ were $74.4{\pm}17.0,\;85.9{\pm}15.8,\;98.3{\pm}11.4\;mg\;O_2\;kg^{-1}hr^{-1}$ in SW and $46.7{\pm}12.0,\;63.3{\pm}7.5,\;82.6{\pm}5.3\;mg\;O_2\;kg^{-1}hr^{-1}$ in FW, respectively, showing a linear increase in OC with water temperature. The OC of fish reared in both SW and FW clear diel rhythm, with lower values at daytime and higher values in the night, in accordance with light (09:00~21:00 hr) and dark (21:00~09:00 hr) phases of the diel cycle (12L : 12D) in water temperature at $15^{\circ}C$ and $20^{\circ}C$. However OC of fish reared in both SW and FW showed unclear diel rhythm with light and dark phases of the diel cycle in water temperature at $25^{\circ}C$. Starry flounder reared in FW had higher ventilation rates than those in SW, but SW had higher OC per breath than those in FW.