• Title/Summary/Keyword: Marginal Rate of Substitution

Search Result 13, Processing Time 0.017 seconds

An Estimation of Generalized Cost for Transit Assignment (대중교통 통행배정을 위한 일반화비용 추정)

  • Son, Sang-Hun;Choe, Gi-Ju;Yu, Jeong-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.121-132
    • /
    • 2007
  • This paper addressed the issue of a generalized cost model for transit assignment. The model composed of walk time, waiting time (including transfer waiting time), line-haul time, transfer walk time, and fare. The weights of each component were supposed to be calculated using the stated preference (SP) data, which were collected prudently in order to reflect reality. The marginal rate of substitution and wage rate were applied to calculate the weights. The results showed that the weight of walking time per in-vehicle travel time (IVTT) was 1.507, the weight of waiting time (per IVTT) was 1.749, that of transfer time (per IVTT) was 1.474, and that of fare (per IVTT) was 1.476 for trips between inner-city areas in Seoul. Weights for each component were identified as 1.871, 1.967, 1.015, and 0.857, respectively, for trips between Seoul and Gyeonggi. Statistical significance existed between two cases and each variable was also statistically significant. Transit assignment using the relative weights estimated in this study was implemented to analyze the travel index in a macroscopic and quantitative basis. The results showed that average total travel times were 30.23 minutes and 63.29 minutes and average generalized costs were 2,510 won and 3,880 won for trips between inner-city areas in Seoul and between Seoul and Gyeonggi, respectively.

Utility Maximization, The Shapes of the Indifference Curve on the Characteristic Space and its Estimation: A Theoretical Approach (개인여객 효용의 극대화 및 운송특성공간상의 무차별곡선의 형태와 그 추정)

  • Kim, Jong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • The random utility theory and the multinomial logit model (including a more recent variant--the mixed multinomial logit) derived from it have constituted a back bone for theoretical and empirical analyses of various travel demand features including mode choice. In their empirical applications, however, it is customary to specify random utilities which are linear in modal attributes such as time and cost, and in socio-economic variables. The linearity helps easy derivation of important information such as value of travel time savings by calculating marginal rate of substitution between time and cost. In this paper the author focuses on the very linearity of the random utilities. Taking into account the fact that the mode chooser is also labour supplier, commodity consumer as well as leisure-seeker, the author sets up a maximization model of the traveller, which encompasses various economic activities of the traveller. The author derive from the model the indifference curve defined on the space of modal attributes, time and cost and investigate under what conditions the random utility of the traveller becomes linear. It turns out that there exist the conditions under which the random utility is really linear in modal attributes, but the property does not hold when the traveller has a corner solution on the space of modal attributes, or when the primary utility function of the traveller is directly affected by labour provided and/or the travel time itself. As a corollary of the analysis, a random utility is suggested, approximated up to the second order of the variables involved for empirical studies of the field.

Development and Application of the Mode Choice Models According to Zone Sizes (분석대상 규모에 따른 수단분담모형의 추정과 적용에 관한 연구)

  • Kim, Ju-Yeong;Lee, Seung-Jae;Kim, Do-Gyeong;Jeon, Jang-U
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Mode choice model is an essential element for estimating- the demand of new means of transportation in the planning stage as well as in the establishment phase. In general, current demand analysis model developed for the mode choice analysis applies common parameters of utility function in each region which causes inaccuracy in forecasting mode choice behavior. Several critical problems from using common parameters are: a common parameter set can not reflect different distribution of coefficient for travel time and travel cost by different population. Consequently, the resulting model fails to accurately explain policy variables such as travel time and travel cost. In particular, the nonlinear logit model applied to aggregation data is vulnerable to the aggregation error. The purpose of this paper is to consider the regional characteristics by adopting the parameters fitted to each area, so as to reduce prediction errors and enhance accuracy of the resulting mode choice model. In order to estimate parameter of each area, this study used Household Travel Survey Data of Metropolitan Transportation Authority. For the verification of the model, the value of time by marginal rate of substitution is evaluated and statistical test for resulting coefficients is also carried out. In order to crosscheck the applicability and reliability of the model, changes in mode choice are analyzed when Seoul subway line 9 is newly opened and the results are compared with those from the existing model developed without considering the regional characteristics.