• Title/Summary/Keyword: Marbling

Search Result 479, Processing Time 0.024 seconds

Analysis of the ADSF/resistin Gene Polymorphism Associated with Carcass Traits in Hanwoo (한우 ADSF/resistin 유전자의 단일 염기 다형과 육질관련형질 상관 분석)

  • Park, J.A.;Kang, H.K.;Chae, E.J.;Seo, K.S.;Kim, S.H.;Yun, C.H.;Moon, Y.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • Adipocyte-specific secretory factor(ADSF)/resistin, an hormone, is a small cysteine-rich protein secreted from adipose tissue and ADSF/resistin has been implicated in modulating adipogenesis in human and rodents. Although the exact role of ADSF/resistin in bovine has not been identified, it may have directly or indirectly involved in adipocyte differentiation. The objective of this study was to investigate its DNA polymorphism associated with carcass traits in Korean Native Cattle(Hanwoo). To investigate DNA polymorphism in Hanwoo ADSF/resistin gene, blood samples were taken from 295 Hanwoo steers belonging to progeny testing at Hanwoo Improvement Center in Korea. Seven single nucleotide polymorphisms(SNPs) were found in intron regions but not in any other regions including promoter (1.7kb) and 4 exons. The highest frequency among SNPs was C186A(0.16/0.84) following G964A (0.156/0.884). The significant correlation(P<0.05) between the SNPs and economic traits was found on 764Ains associated with marbling but not from any other SNPs determined.  A computer simulation was also conducted to assess the efficiency of marker assisted selection(MAS) versus the conventional breeding scheme.  Results revealed that MAS was more efficient as a breeding tool compared to the conventional. In conclusion, ADSF/Resistin gene is one of candidate genes to evaluate the quality, especially marbling score, in Hanwoo.

Genetic Analysis of Ultrasound and Carcass Measurement Traits in a Regional Hanwoo Steer Population

  • Hwang, Jeong Mi;Cheong, Jae Kyoung;Kim, Sam Su;Jung, Bong Hwan;Koh, Myung Jae;Kim, Hyeong Cheol;Choy, Yun Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.457-463
    • /
    • 2014
  • Ultrasound measurements of backfat thickness (UBF), longissimus muscle area (ULMA) and marbling score (UMS) and carcass measurements of carcass weight (CW), backfat thickness (BF), longissimus muscle area (LMA), and marbling score (MS) on 7,044 Hanwoo steers were analyzed to estimate genetic parameters. Data from Hanwoo steers that were raised, finished in Hoengseong-gun, Gangwon-do (province) and shipped to slaughter houses during the period from October 2010 to April 2013 were evaluated. Ultrasound measurements were taken at approximately three months before slaughter by an experienced operator using a B-mode real-time ultrasound device (HS-2000, FHK Co. Ltd., Tokyo, Japan) with a 3.5 MHz linear probe. Ultrasound scanning was on the left side between 13th rib and the first lumbar vertebrae. All slaughtering processes and carcass evaluations were performed in accordance with the guidelines of beef grading system of Korea. To estimate genetic parameters, multiple trait animal models were applied. Fixed effects included in the models were: the effects of farm, contemporary group effects (year-season at the time of ultrasound scanning in the models for UBF, ULMA, and UMS, and year-season at slaughter in the models for CW, BF, LMA, and MS), the effects of ultrasound technicians as class variables and the effects of the age in days at ultrasound scanning or at slaughtering as linear covariates, respectively for ultrasound and carcass measures. Heritability estimates obtained from our analyses were 0.37 for UBF, 0.13 for ULMA, 0.27 for UMS, 0.44 for CW, 0.33 for BF, 0.36 for LMA and 0.54 MS, respectively. Genetic correlations were strongly positive between corresponding traits of ultrasound and carcass measures. Genetic correlation coefficient between UBF and BF estimate was 0.938, between ULMA and LMA was 0.767 and between UMS and MS was 0.925. These results suggest that ultrasound measurement traits are genetically similar to carcass measurement traits.

Development of an Integrated General Model (IGM) System for Comparison of Genetic Gains from Different Bull Selection Strategies for Korean Brown Cattle (Hanwoo)

  • Lee, Jeong-Soo;Kim, Hee-Bal;Kim, Si-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1483-1503
    • /
    • 2011
  • To advance the effectiveness of the current Hanwoo improvement system, we developed a general simulation that compared a series of breeding schemes under realistic user circumstances. We call this system the Integrated General Model (IGM) and it allows users to control the breeding schemes and selection methods by manipulating the input parameters. The Current Hanwoo Performance and Progeny Test (CHPPT) scheme was simulated with a Modified Hanwoo Performance and Progeny Test (MHPPT) scheme using a Hanwoo Breeding Farm cow population of the Livestock Improvement Main Center (LOMC) of the National Agricultural Cooperatives Federation (NACF). To compare the two schemes, a new method, the Simple Hanwoo Performance Test (SHPT), which uses ultrasound technology for measuring the carcass traits of live animals, was developed. These three models, including the CHPPT, incorporated three types of selection criteria: phenotype (PH), true breeding value (TBV), and estimated breeding value (EBV). The simulation was scheduled to mimic an actual Hanwoo breeding program; thus, the simulation was run to include the years 1983-2020 for each breeding method and was replicated 10 times. The parameters for simulation were derived from the literature. Approximately 642,000 animals were simulated per replication for the CHPPT scheme; 129,000 animals were simulated for the MHPPT scheme and 112,000 animals for the SHPT scheme. Throughout the 38-year simulation, all estimated parameters of each simulated population, regardless of population size, showed results similar to the input parameters. The deviations between input and output values for the parameters in the large populations were statistically acceptable. In this study, we integrated three simulated models, including the CHPPT, in an attempt to achieve the greatest genetic gains within major economic traits including body weight at 12 months of age (BW12), body weight at 24 months of age (BW24), average daily gain from 6 to 12 months (ADG), carcass weight (CWT), carcass longissimus muscle area (CLMA), carcass marbling score (CMS), ultrasound scanned longissimus muscle area (ULMA), and ultrasound scanned marbling score (UMS).

Evaluation of Genome Based Estimated Breeding Values for Meat Quality in a Berkshire Population Using High Density Single Nucleotide Polymorphism Chips

  • Baby, S.;Hyeong, K.E.;Lee, Y.M.;Jung, J.H.;Oh, D.Y.;Nam, K.C.;Kim, T.H.;Lee, H.K.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1540-1547
    • /
    • 2014
  • The accuracy of genomic estimated breeding values (GEBV) was evaluated for sixteen meat quality traits in a Berkshire population (n = 1,191) that was collected from Dasan breeding farm, Namwon, Korea. The animals were genotyped with the Illumina porcine 62 K single nucleotide polymorphism (SNP) bead chips, in which a set of 36,605 SNPs were available after quality control tests. Two methods were applied to evaluate GEBV accuracies, i.e. genome based linear unbiased prediction method (GBLUP) and Bayes B, using ASREML 3.0 and Gensel 4.0 software, respectively. The traits composed different sets of training (both genotypes and phenotypes) and testing (genotypes only) data. Under the GBLUP model, the GEBV accuracies for the training data ranged from $0.42{\pm}0.08$ for collagen to $0.75{\pm}0.02$ for water holding capacity with an average of $0.65{\pm}0.04$ across all the traits. Under the Bayes B model, the GEBV accuracy ranged from $0.10{\pm}0.14$ for National Pork Producers Council (NPCC) marbling score to $0.76{\pm}0.04$ for drip loss, with an average of $0.49{\pm}0.10$. For the testing samples, the GEBV accuracy had an average of $0.46{\pm}0.10$ under the GBLUP model, ranging from $0.20{\pm}0.18$ for protein to $0.65{\pm}0.06$ for drip loss. Under the Bayes B model, the GEBV accuracy ranged from $0.04{\pm}0.09$ for NPCC marbling score to $0.72{\pm}0.05$ for drip loss with an average of $0.38{\pm}0.13$. The GEBV accuracy increased with the size of the training data and heritability. In general, the GEBV accuracies under the Bayes B model were lower than under the GBLUP model, especially when the training sample size was small. Our results suggest that a much greater training sample size is needed to get better GEBV accuracies for the testing samples.

Prediction of genomic breeding values of carcass traits using whole genome SNP data in Hanwoo (Korean cattle) (한우에 있어서 유전체 육종가 추정)

  • Lee, Seung Hwan;Kim, Heong Cheul;Lim, Dajeong;Dang, Chang Gwan;Cho, Yong Min;Kim, Si Dong;Lee, Hak Kyo;Lee, Jun Heon;Yang, Boh Suk;Oh, Sung Jong;Hong, Seong Koo;Chang, Won Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.357-364
    • /
    • 2012
  • Genomic breeding value (GEBV) has recently become available in the beef cattle industry. Genomic selection methods are exceptionally valuable for selecting traits, such as marbling, that are difficult to measure until later in life. One method to utilize information from sparse marker panels is the Bayesian model selection method with RJMCMC. The accuracy of prediction varies between a multiple SNP model with RJMCMC (0.47 to 0.73) and a least squares method (0.11 to 0.41) when using SNP information, while the accuracy of prediction increases in the multiple SNP (0.56 to 0.90) and least square methods (0.21 to 0.63) when including a polygenic effect. In the multiple SNP model with RJMCMC model selection method, the accuracy ($r^2$) of GEBV for marbling predicted based only on SNP effects was 0.47, while the $r^2$ of GEBV predicted by SNP plus polygenic effect was 0.56. The accuracies of GEBV predicted using only SNP information were 0.62, 0.68 and 0.73 for CWT, EMA and BF, respectively. However, when polygenic effects were included, the accuracies of GEBV were increased to 0.89, 0.90 and 0.89 for CWT, EMA and BF, respectively. Our data demonstrate that SNP information alone is missing genetic variation information that contributes to phenotypes for carcass traits, and that polygenic effects compensate genetic variation that whole genome SNP data do not explain. Overall, the multiple SNP model with the RJMCMC model selection method provides a better prediction of GEBV than does the least squares method (single marker regression).

The influence of shade allocation or total shade plus overhead fan on growth performance, efficiency of dietary energy utilization, and carcass characteristics of feedlot cattle under tropical ambient conditions

  • Castro-Perez, Beatriz I.;Estrada-Angulo, Alfredo;Rios-Rincon, Francisco G.;Nunez-Benitez, Victor H.;Rivera-Mendez, Carlos R.;Urias-Estrada, Jesus D.;Zinn, Richard A.;Barreras, Alberto;Plascencia, Alejandro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1034-1041
    • /
    • 2020
  • Objective: The objective of this experiment was to evaluate the effect of shade allocation and shade plus fan on growth performance, dietary energy utilization and carcass characteristics of feedlot cattle under tropical ambient conditions Methods: Two trials were conducted, involving a total of 1,560 young bulls (289±22 kg BW) assigned to 24 pens (65 bulls/pen and 6 pens/treatment). Pens were 585 ㎡ with 15 m fence line feed bunks. Shade treatments (㎡ shade/animal) were: i) limited shade (LS) to 1.2 ㎡ shade/animal (LS1.2); ii) limited shade to 2.4 ㎡ shade/animal (LS2.4); iii) total shade (TS) which correspond to 9 ㎡/animal, and iv) total shade equipped with fans (TS+F). Trials lasted 158 and 183 days. In both studies, the average weekly maximum temperature exceeded 34℃. Results: Increasing shade allocation tended (p = 0.08) to linearly increases average daily gain (ADG), and dry matter intake (DMI, quadratic effect, p = 0.03). This effect was most apparent between LS1.2 and LS2.4. Shade allocation, per se, did not affect gain efficiency or estimated dietary net energy (NE). Compared with TS, TS+F increased (p<0.05) ADG, gain efficiency, and tended (p = 0.06) to increase dietary NE. There was a quadratic effect of shade on longissimus area and marbling score, with values being lower (p<0.01) for LS2.4 than for LS1.2 or TS. Likewise, marbling score was lower for TS+F than for TS. Percentage kidney, pelvic, and heart (KPH) linearly decreased with increasing shade. In contrast, KPH was greater for TS than for TS+F. Conclusion: Providing more than 2.4 ㎡ shade/animal will not further enhance feedlot performance. The use of fans in combination with shade increases ADG and gain efficiency beyond that of shade, alone. These enhancements were not associated with increased DMI, but rather, to an amelioration of ambient temperature humidity index on maintenance energy requirement.

Effects of Dietary Thiazolidinedione Supplementation on Growth Performance, Intramuscular Fat and Related Genes mRNA Abundance in the Longissimus Dorsi Muscle of Finishing Pigs

  • Chen, X.;Feng, Y.;Yang, W.J.;Shu, G.;Jiang, Q.Y.;Wang, X.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.1012-1020
    • /
    • 2013
  • The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of $PPAR{\gamma}$ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.

Reduction of slaughter age of Hanwoo steers by early genotyping based on meat yield index

  • Jeong, Chang Dae;Islam, Mahfuzul;Kim, Jong-Joo;Cho, Yong-Il;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.770-777
    • /
    • 2020
  • Objective: This study was conducted to determine early hereditary endowment to establish a short-term feeding program. Methods: Hanwoo steers (n = 140) were equally distributed into four groups (35/group) based on genetic meat yield index (MYI) viz. the greatest, great, low, and the lowest at Jukam Hanwoo farm, Goheung. All animals were fed in group pens (5 animals/pen) with similar feed depending on the growth stage. Rice straw was provided ad libitum, whereas concentrate was fed at 5.71 kg during the growing period (6 to 13 mo) and 9.4 kg during the fattening period (13 to 28 mo). Body weight (BW) was measured at two-month intervals, whereas carcass weight was determined at slaughtering at about 31 months of age. The Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip was used to determine the meat quantity-related gene in the blood. Results: After 6 months, the highest (p<0.05) BW was observed in the greatest MYI group (190.77 kg) and the lowest (p<0.05) in the lowest MYI group (173.51 kg). The great MYI group also showed significantly (p<0.05) higher BW than the lowest MYI group. After 16 and 24 months, the greatest MYI group had the highest BW gain (p<0.05) and were therefore slaughtered the earliest. Carcass weight was significantly (p<0.05) higher in the greatest and the great MYI groups followed by the low and the lowest MYI groups. Back-fat thickness in the greatest MYI group was highly correlated to carcass weight and marbling score. The SNP array analysis identified the carcass-weight related gene BTB-01280026 with an additive effect. The steers with the allele increasing carcass weight had heavier slaughter weight of about 12 kg. Conclusion: Genetic MYI is a potential tool for calf selection, which will reduce the slaughter age while simultaneously increasing carcass weight, back-fat thickness, and marbling score.

Cloning of Farm Animals in Japan; The Present and the Future

  • Shioya, Yasuo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.10a
    • /
    • pp.37-43
    • /
    • 2001
  • 1. About fifty thousand of cattle embryos were transferred and 16000 ET-calves were born in 1999. Eighty percents of embryos were collected from Japanese Black beef donors and transferred to dairy Holstein heifers and cows. Since 1985, we have achieved in bovine in vitro fertilization using immature oocytes collected from ovaries of slaughterhouse. Now over 8000 embryos fertilized by Japanese Black bull, as Kitaguni 7~8 or Mitsufuku, famousbulls as high marbling score of progeny tests were sold to dairy farmers and transferred to their dairy cattle every year. 2. Embryo splitting for identical twins is demonstrated an useful tool to supply a bull for semen collection and a steer for beef performance test. According to the data of Dr. Hashiyada(2001), 296 pairs of split-half embryos were transferred to recipients and 98 gave births of 112 calves (23 pairs of identical twins and 66 singletons). 3. A blastomere-nuclear-transferred cloned calf was born in 1990 by a joint research with Drs. Tsunoda, National Institute of Animal Industry (NIAI) and Ushijima, Chiba Prefectural Farm Animal Center. The fruits of this technology were applied to the production of a calf from a cell of long-term-cultured inner cell mass (1988, Itoh et al, ZEN-NOH Central Research Institute for Feed and Livestock) and a cloned calf from three-successive-cloning (1997, Tsunoda et al.). According to the survey of MAFF of Japan, over 500 calves were born until this year and a glaf of them were already brought to the market for beef. 4. After the report of "Dolly", in February 1997, the first somatic cell clone female calves were born in July 1998 as the fruits of the joint research organized by Dr. Tsunoda in Kinki University (Kato et al, 2000). The male calves were born in August and September 1998 by the collaboration with NIAI and Kagoshima Prefecture. Then 244 calves, four pigs and a kid of goat were now born in 36 institutes of Japan. 5. Somatic cell cloning in farm animal production will bring us as effective reproductive method of elite-dairy- cows, super-cows and excellent bulls. The effect of making copy farm animal is also related to the reservation of genetic resources and re-creation of a male bull from a castrated steer of excellent marbling beef. Cloning of genetically modified animals is most promising to making pig organs transplant to people and providing protein drugs in milk of pig, goat and cattle. 6. Farm animal cloning is one of the most dreamful technologies of 21th century. It is necessary to develop this technology more efficient and stable as realistic technology of the farm animal production. We are making researches related to the best condition of donor cells for high productivity of cloning, genetic analysis of cloned animals, growth and performance abilities of clone cattle and pathological and genetical analysis of high rates of abortion and stillbirth of clone calves (about 30% of periparutum mortality). 7. It is requested in the report of Ministry of Health, labor and Welfare to make clear that carbon-copy cattle(somatic cell clone cattle) are safe and heathy for a commercial market since the somatic cell cloning is a completely new technology. Fattened beef steers (well-proved normal growth) and milking cows(shown a good fertility) are now provided for the assessment of food safety.

  • PDF

Identification of a SNP in Cattle HGD Gene with its Effect on Economic Trait in Hanwoo (한우 HGD 유전자내 변이지역과 경제형질간의 연관성 분석)

  • Han, Jung-Min;Kong, Hong Sik
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1168-1173
    • /
    • 2014
  • The homogentisate 1,2-dioxygenase (HGD) gene, which consists of 14 exons and spans approximately 42630bp on Bos taurus autosome 1 (BTA 1), is one of the six enzymes required for catabolism of the aromatic amino acids tyrosine and phenylalanine. It has been reported that BTA1 harbors quantitative trait loci that effect marbling score (MS), carcass weight (CW), and longissimus muscle area (LMA) in cattle. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) in the HGD gene and to analyze their association with economic traits in Korean cattle (Hanwoo). Genetic polymorphisms were screened by direct sequencing, which detected 10 SNPs (T11187C, T11301A, T11398G, G29833A, G34256T, G34257C, T34284C, T42333G, T42348C, and T42468C). Six polymorphic sites were selected for genotyping, and economic traits were analyzed using a general linear model in Korean cattle (n=90). The observed genotype frequencies for G34256T were 0.5843(GG), 0.3708(GT), and 0.0449(TT). In addition, 0.3596(GG), 0.3708(GC), and 0.2697(CC) were observed for the G34257C mutation. Statistical association analysis revealed that G34256T polymorphisms were significantly associated with MS, and G34257C polymorphisms were significantly associated with MS and LMA (p<0.05). Further study is needed in order to use the genetic variant as a marker for marker-assisted selection in Korean cattle.