• Title/Summary/Keyword: Mapping Method

Search Result 2,601, Processing Time 0.025 seconds

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

FH DFT-Spreading OFDM System for the Effective Channel Estimation and PAPR Reduction in Jamming Channel (재밍 채널에서 효과적 채널 추정과 PAPR 저감을 위한 주파수 도약 DFT-Spreading OFDM 시스템)

  • Kim, Jang-Su;Ryu, Heung-Gyoon;Lee, Seung-Jun;Ko, Dong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.796-804
    • /
    • 2010
  • It is important to use the comb type pilot allocation for the continuous channel and efficient processing. And DFT-spreading OFDM is used a lot to solve high PAPR problem of OFDM system. However, PAPR is increased again when comb type pilot is used to estimate channel characteristics. So, in this paper, we employ a new SLM method to DFT-spreading OFDM system to reduce increased high PAPR. And we suggest an effective method to transmit side information without additional bandwidth. Pilot and side information must be preserved from jamming or intentional interferences since those are very important in DFT spread OFDM system using SLM. So, in this paper, we like to analyze and simulate the performance of DFT spread OFDM system based on SLM against jamming signal. To remedy the vulnerable shortcomings of DFT spread OFDM about jamming or intentional interferences, we employ FH(Frequency Hopping) method and analyze system performance under the several jamming conditions such as MTJ(Multi Tone Jamming) and PBJ(Partial Band Jamming).

GPU-only Terrain Rendering for Walk-through (Walk-through를 지원하는 GPU 기반 지형렌더링)

  • Park, Sun-Yong;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.71-80
    • /
    • 2007
  • In this paper, we introduce an efficient GPU-based real-time rendering technique applicable to every kind of game. Our method, without an extra geometry, can represent terrain just with a height map. It makes it possible to freely go around in the air or on the surface, so we can directly apply it to any computer games as well as a virtual reality. Since our method is not based on any geometrical structure, it doesn't need special LOD policy and the precision of geometrical representation and visual quality absolutely depend on the resolution of height map and color map. Moreover, GPU-only technique allows the general CPU to be dedicated to more general work, and as a result, enhances the overall performance of the computer. To date, there have been many researches related to the terrain representation, but most of them rely on CPU or confmed its applications to flight simulation, Improving existing displacement mapping techniques and applying it to our terrain rendering, we completely ruled out the problems, such as cracking, poping etc, which cause in polygon-based techniques, The most important contributions are to efficiently deal with arbitrary LOS(Line Of Sight) and dramatically improve visual quality during walk-through by reconstructing a height field with curved patches. We suggest a simple and useful method for calculating ray-patch intersections. We implemented all these on GPU 100%, and got tens to hundreds of framerates with height maps a variety of resolutions$(256{\times}256\;to\;4096{\times}4096)$.

  • PDF

A Method for Migrating Object-Oriented Systems into SOA Services (객체지향 시스템에서 SOA서비스로의 전이 기법)

  • Kim, Ji-Won;La, Hyun-Jung;Kim, Soo-Dong
    • The KIPS Transactions:PartD
    • /
    • v.17D no.1
    • /
    • pp.25-40
    • /
    • 2010
  • Service-Oriented Architecture (SOA) is a development paradigm for reusing services as an independent reuse unit. A service delivers a cohesive functionality through its external interface. Since services have unique characteristics which are not typically presented in conventional development approaches, there is a demand for effective approaches to developing services. Most of the current SOA methodologies presenta process where services are designed and developed from the requirements rather than reusing existing assets, which demands high cost and effort. Hence, a desirable approach is to be able to develop services by migrating from their existing legacy systems such as object-oriented system. A difficulty in this migration is that objects in object-oriented systems reveal characteristics which differ considerably from those of services. That is, objects are designed without considering commonalities among several consumers. In this paper, we first define mapping relationships between key artifacts in object-oriented system and those in SOA services. By these relationships and considering commonalities among several applications in a domain, we propose three systematic methods to migrate from object-oriented system to SOA services. Each method consists of a list of input and output artifacts and detailed guidelines which are performed in order. Through these methods, service developers can easily develop services with less effort.

Mobile Cloud Context-Awareness System based on Jess Inference and Semantic Web RL for Inference Cost Decline (추론 비용 감소를 위한 Jess 추론과 시멘틱 웹 RL기반의 모바일 클라우드 상황인식 시스템)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.19-30
    • /
    • 2012
  • The context aware service is the service to provide useful information to the users by recognizing surroundings around people who receive the service via computer based on computing and communication, and by conducting self-decision. But CAS(Context Awareness System) shows the weak point of small-scale context awareness processing capacity due to restricted mobile function under the current mobile environment, memory space, and inference cost increment. In this paper, we propose a mobile cloud context system with using Google App Engine based on PaaS(Platform as a Service) in order to get context service in various mobile devices without any subordination to any specific platform. Inference design method of the proposed system makes use of knowledge-based framework with semantic inference that is presented by SWRL rule and OWL ontology and Jess with rule-based inference engine. As well as, it is intended to shorten the context service reasoning time with mapping the regular reasoning of SWRL to Jess reasoning engine by connecting the values such as Class, Property and Individual which are regular information in the form of SWRL to Jess reasoning engine via JessTab plug-in in order to overcome the demerit of queries reasoning method of SparQL in semantic search which is a previous reasoning method.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

Fire Severity Mapping Using a Single Post-Fire Landsat 7 ETM+ Imagery (단일 시기의 Landsat 7 ETM+ 영상을 이용한 산불피해지도 작성)

  • 원강영;임정호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.85-97
    • /
    • 2001
  • The KT(Kauth-Thomas) and IHS(Intensity-Hue-Saturation) transformation techniques were introduced and compared to investigate fire-scarred areas with single post-fire Landsat 7 ETM+ image. This study consists of two parts. First, using only geometrically corrected imagery, it was examined whether or not the different level of fire-damaged areas could be detected by simple slicing method within the image enhanced by the IHS transform. As a result, since the spectral distribution of each class on each IHS component was overlaid, the simple slicing method did not seem appropriate for the delineation of the areas of the different level of fire severity. Second, the image rectified by both radiometrically and topographically was enhanced by the KT transformation and the IHS transformation, respectively. Then, the images were classified by the maximum likelihood method. The cross-validation was performed for the compensation of relatively small set of ground truth data. The results showed that KT transformation produced better accuracy than IHS transformation. In addition, the KT feature spaces and the spectral distribution of IHS components were analyzed on the graph. This study has shown that, as for the detection of the different level of fire severity, the KT transformation reflects the ground physical conditions better than the IHS transformation.

Photochemical Reflectance Index (PRI) Mapping using Drone-based Hyperspectral Image for Evaluation of Crop Stress and its Application to Multispectral Imagery (작물 스트레스 평가를 위한 드론 초분광 영상 기반 광화학반사지수 산출 및 다중분광 영상에의 적용)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.637-647
    • /
    • 2019
  • The detection of crop stress is an important issue for the accurate assessment of yield decline. The photochemical reflectance index (PRI) was developed as a remotely sensed indicator of light use efficiency (LUE). The PRI has been tested in crop stress detection and a number of studies demonstrated the feasibility of using it. However, only few studies have focused on the use of PRI from remote sensing imagery. The monitoring of PRI using drone and satellite is made difficult by the low spectral resolution image captures. In order to estimate PRI from multispectral sensor, we propose a band fusion method using adjacent bands. The method is applied to the drone-based hyperspectral and multispectral imagery and estimated PRI explain 79% of the original PRI. And time series analyses showed that two PRI data (drone-based and SRS sensor) had very similar temporal variations. From these results, PRI from multispectral imagery using band fusion can be used as a new method for evaluation of crop stress.

Development of KBIMS Architectural and Structural Element Library and IFC Property Name Conversion Methodology (KBIMS 건축 및 구조 부재 라이브러리 및 IFC 속성명 변환 방법 개발)

  • Kim, Seonwoo;Kim, Sunjung;Kim, Honghyun;Bae, Kiwoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.505-514
    • /
    • 2020
  • This research introduces the method of developing Korea BIM standard (KBIMS) architectural and structural element library and the methodology of converting KBIMS IFC property names with special characters. Diverse BIM tools are utilizing in project, however BIM library researches lack diversity on BIM tool selection. This research described the method to generate twelve categories and seven hundred and ninety-three elements library containing geometrical and numerical data in CATIA V6. KBIMS has its special property data naming systems which was the challenge inputting to ENOVIA IFC database. Three mapping methods for special naming characters had been developed and the ASCII code method was applied. In addition, the convertor prototype had been developed for searching and replacing the ASCII codes into the original KBIMS IFC property names. The methodology was verified by exporting 2,443 entities without data loss in the sample model conversion test. This research would provide a wider choice of BIM tool selection for applying KBIMS. Furthermore, the research would help on the reduction of data interoperability issues in projects. The developed library would be open to the public, however the continuous update and maintenance would be necessary.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.