• Title/Summary/Keyword: Map texture

Search Result 208, Processing Time 0.024 seconds

A Study on the Improving the Rendering Performance of the 3D Road Model for the Vehicle Simulator (차량 시뮬레이터를 위한 3차원 도로모델의 렌더링 성능 향상에 관한 연구)

  • Choi, Young-Il;Jang, Suk;Kim, Kyu-Hee;Cho, Ki-Yong;Kwon, Seong-Jin;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.162-170
    • /
    • 2004
  • In these days, a vehicle simulator is developed by using a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with a natural interaction, a sufficient immersion and realistic images. To achieve this, it is important to provide a fast and uniform rendering performance regardless of the complexity of virtual worlds or the level of simulation. In this paper, modeling methods which offer an improved rendering performance for complex VR applications as 3D road model have been implemented and verified. The key idea of the methods is to reduce a load of VR system by means of LOD(Level of Detail), alpha blending texture mapping, texture mip-mapping and bilboard. Hence, in 3D road model where a simulation is complex or a scene is very large, the methods can provide uniform and acceptable frame rates. The VR system which is constructed with the methods has been experimented under the various application environments. It is confirmed that the proposed methods are effective and adequate to the VR system which associates with a vehicle simulator.

Robust and Blind Watermarking for DIBR Using a Depth Variation Map (깊이변화지도를 이용한 DIBR 공격의 강인성 블라인드 워터마킹)

  • Lee, Yong-Seok;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.845-860
    • /
    • 2016
  • This paper proposes a digital watermarking scheme to protect the ownership of the freeview 2D or 3D image such that the viewer watches the image(s) by rendering a arbitrary viewpoint image(s) with the received texture image and its depth image. In this case a viewpoint change attack essentially occurs, even if it is not malicious. In addition some malicious attacks should be considered, which is to remove the embedded watermark information. In this paper, we generate a depth variation map (DVM) to find the locations less sensitive to the viewpoint change. For each LH subband after 3-level 2DDWT for the texture image, the watermarking locations are found by referring the DVM. The method to embed a watermark bit to a pixel uses a linear quantizer whose quantization step is determined according to the energy of the subband. To extract the watermark information, all the possible candidates are first extracted from the attacked image by considering the correlation to the original watermark information. For each bit position, the final extracted bit is determined by a statistical treatment with all the candidates corresponding that position. The proposed method is experimented with various test images for the various attacks and compared to the previous methods to show that the proposed one has excellent performance.

A new approach for overlay text detection from complex video scene (새로운 비디오 자막 영역 검출 기법)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.544-553
    • /
    • 2008
  • With the development of video editing technology, there are growing uses of overlay text inserted into video contents to provide viewers with better visual understanding. Since the content of the scene or the editor's intention can be well represented by using inserted text, it is useful for video information retrieval and indexing. Most of the previous approaches are based on low-level features, such as edge, color, and texture information. However, existing methods experience difficulties in handling texts with various contrasts or inserted in a complex background. In this paper, we propose a novel framework to localize the overlay text in a video scene. Based on our observation that there exist transient colors between inserted text and its adjacent background a transition map is generated. Then candidate regions are extracted by using the transition map and overlay text is finally determined based on the density of state in each candidate. The proposed method is robust to color, size, position, style, and contrast of overlay text. It is also language free. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

Construction of Roads for Vehicle Simulator Using GIS Map (GIS 데이터를 이용한 차량 시뮬레이터용 도로 구축에 관한 연구)

  • 임형은;성원석;황원걸;주승원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.88-94
    • /
    • 2004
  • Recently, vehicle simulators are widely used to evaluate driver's responses and driver assistance systems. It needs much effort to construct the virtual driving environment for a vehicle simulator. In this study, it is described how to make effectively the roads and the driving environment for a vehicle simulator. The GIS (Geographic Information System) is used to construct the roads and the environment effectively. Because the GIS is the integrated system of geographical data, it contains useful data to make virtual driving environment. First, the outline and centerline of roads is abstracted from the GIS. From the road outline, the road width is calculated. Using the centerline, the grid model of roads is constructed. The final graphic model of roads is constructed by mapping road image to the grid model according to the number of lanes and the kind of surface. Data of buildings from the GIS are abstracted. Each shape and height of buildings is determined according to kind of buildings, the final graphic model of buildings is constructed. Then, the graphic model of roadside tree is also constructed. Finally, the driving environment for driving simulator is constructed by converting the three graphic models with the graphic format of Direct-X and by joining the three graphic models.

Visible Image Enhancement Method Considering Thermal Information from Infrared Image (원적외선 영상의 열 정보를 고려한 가시광 영상 개선 방법)

  • Kim, Seonkeol;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.550-558
    • /
    • 2013
  • The infrared and visible images are represented by different information due to the different wavelength of the light. The infrared image has thermal information and the visible image has texture information. Desirable results are obtained by fusing infrared and visible information. To enhance a visible image, we extract a weight map from a visible image using saturation, brightness. After that, the weight map is adjusted using thermal information in the infrared image. Finally, an enhanced image is resulted from combining an infrared image and a visible image. Our experiment results show that our proposed algorithm is working well to enhance the smoke in the original image.

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

LANDSLIDE SUSCEPTIBILITY MAPPING AND VERIFICATION USING THE GIS AND BAYESIAN PROBABILITY MODEL IN BOEUN, KOREA

  • Choi, Jae-Won;Lee, Sa-Ro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.100-100
    • /
    • 2003
  • The purpose of this study is to reveals spatial relationships between landslides and geospatial data set, map the landslide susceptibility using the relationships and verify the landslide susceptibility using the landslide occurrence data in Bosun area in 1998. Landslide locations were detected from aerial photography and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database using GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. Is extract the relationship between landslides and geospatial database, Bayesian probability methods, likelihood ratio and weight of evidence, were applied and the ratio and contrast value that is W$\^$+/- W$\^$-/ were calculated. The landslide susceptibility index was calculated by summation of the likelihood ratio and contrast value and the landslide susceptibility maps were generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of landslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF

Modeling of Roads for Vehicle Simulator Using GIS Map Data

  • Im Hyung-Eun;Sung Won-Suk;Hwang Won-Gul;Ichiro Kageyama
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.3-7
    • /
    • 2005
  • Recently, vehicle simulators are widely used to evaluate driver s responses and driver assistance systems. It needs much effort to construct the virtual driving environment for a vehicle simulator. In this study, it is described how to make effectively the roads and the driving environment for a vehicle simulator. GIS (Geographic Information System) is used to construct the roads and the environment effectively. Because the GIS is the integrated system of geographical data, it contains useful data to make virtual driving environment. First, boundaries and centerlines of roads are extracted from the GIS. From boundaries, the road width is calculated. Using centerlines, mesh models of roads are constructed. The final graphic model of roads is constructed by mapping road images to those mesh models considering the number of lanes and the kind of surface. Data of buildings from the GIS are extracted. Each shape and height of building is determined considering the kind of building to construct the final graphic model of buildings. Then, the graphic model of roadside trees is constructed to decide their locations. Finally, the driving environment for driving simulator is constructed by converting the three graphic models with the graphic format of Direct-X and by joining the three graphic models.

Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition

  • Yuan, Feiniu;Tang, Tiantian;Xia, Xue;Shi, Jinting;Li, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2078-2093
    • /
    • 2019
  • Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.