• Title/Summary/Keyword: Map based navigation

Search Result 343, Processing Time 0.028 seconds

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Map-Building for Path-Planning of an Autonomous Mobile Robot Using a Single Ultrasonic Sensor (단일 초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성)

  • Kim, Young-Geun;Kim, HaK-Il
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.577-582
    • /
    • 2002
  • The objective of this paper is to produce a weighted graph map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor circumstance. The AMR navigates in th unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. Then, the occupancy grid map is converted to a weighted graph map suing morphological image processing and thinning algorithms. the path- planning for autonomous navigation of a mobile robot can be carried out based on the occupancy grid map. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.

A method of saving Digital Map which was made through Aerial Photography to ORDBMS (항공사진을 통해 제작된 수치지도의 ORDBMS 저장 방안)

  • Woo, Jae-Nam;Park, Hee-Soon;Kwon, Chang-Hee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.831-837
    • /
    • 2009
  • This paper suggests the method for saving the digital map which was made through aerial photography to ORDBMS (Object Relational Database Management System) and analyze its efficiency through experiments. The digital map has been used by file units because of managing or providing it to others. But this way can not get sequential graphic entities and just use it which was included in only one map. In this paper, we saved the digital map to ORDBMS at a time after converted the digital map entities based on the tile to the things can be inserted to ORDBMS. And, we also proved the possible methods to extract the graphic entities what we need from entire blueprint through experiments.

  • PDF

Pedestrian Navigation System in Mountainous non-GPS Environments

  • Lee, Sungnam
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.188-197
    • /
    • 2021
  • In military operations, an accurate localization system is required to navigate soldiers to their destinations, even in non-GPS environments. The global positioning system is a commonly used localization method, but it is difficult to maintain the robustness of GPS-based localization against jamming of signals. In addition, GPS-based localization cannot provide important terrain information such as obstacles. With the widespread use of embedded sensors, sensor-based pedestrian tracking schemes have become an attractive option. However, because of noisy sensor readings, pedestrian tracking systems using motion sensors have a major drawback in that errors in the estimated displacement accumulate over time. We present a group-based standalone system that creates terrain maps automatically while also locating soldiers in mountainous terrain. The system estimates landmarks using inertial sensors and utilizes split group information to improve the robustness of map construction. The evaluation shows that our system successfully corrected and combined the drift error of the system localization without infrastructure.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Design and Implementation of Navigation-Aid for 3D Virtual Environment using Topic Map (토픽맵을 이용한 3차원 가상환경 탐색항해 도구의 설계 및 구현)

  • Kim Hak-Keun;Song Teuk-Seob;Lim Soon-Bum;Choy Yoon-Chul
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.793-802
    • /
    • 2004
  • Users in 3D virtual environment get limited information which contains mostly images. It is the main reason for users getting lost during their Navigation. Various studies of Navigation-Aid have been done in order to solve this problem. In this study, we applied Topic Maps, which is one of semantic Web techniques, to the navigation in a 3D virtual environment. Topic Maps construct semantic linking maps through defining the relations between topics. Experiments in which Topic Map based Navigation-Aid was applied have shown that the Navigation-Aid was effective when the subjects find a detailed target rather than a highly represented one. Also, offering information around the target helped the users to find the target when they navigated without having specific targets.

Local Map-based Exploration Strategy for Mobile Robots (지역 지도 기반의 이동 로봇 탐사 기법)

  • Ryu, Hyejeong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.256-265
    • /
    • 2013
  • A local map-based exploration algorithm for mobile robots is presented. Segmented frontiers and their relative transformations constitute a tree structure. By the proposed efficient frontier segmentation and a local map management method, a robot can reduce the unknown area and update the local grid map which is assigned to each frontier node. Although this local map-based exploration method uses only local maps and their adjacent node information, mapping completion and efficiency can be greatly improved by merging and updating the frontier nodes. Also, we suggest appropriate graph search exploration methods for corridor and hall environments. The simulation demonstrates that the entire environment can be represented by well-distributed frontier nodes.

Infrastructure-independent Navigation System Using Embedded Map and Built-in Sensors in the Ubiquitous Parking Management (유비쿼터스 주차관리 시스템에서 내장 맵 및 센서를 이용한 인프라 독립 네비게이션 시스템)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.93-104
    • /
    • 2012
  • Significant advancements in technology enhanced the reliability of navigation systems that are in use today. The GPS is the most widely used technique for satellite-based location estimation. However, systems based on GPS can only be accurate in providing location data when there is a clear view of the satellites. This paper proposes a self-contained navigation system that does not depend on any tracking infrastructure. Using the built-in sensors of a smartphone and a self-contained map, we implemented an accurate car locator. Evaluation results show that our proposed system outperforms GPS in providing accurate car location assistance.

Oil Spill Response System using Server-client GIS

  • Kim, Hye-Jin;Lee, Moon-Jin;Oh, Se-Woong
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.735-740
    • /
    • 2011
  • It is necessary to develop the one stop system in order to protect our marine environment rapidly from oil spill accident. The purpose of this study is to develop real time database for oil spill prediction modeling and implement real time prediction modelling with ESI and server-client GIS based user interface. The existing oil spill prediction model cannot provide one stop information system for public and government who should protect sea from oil spill accident. The development of multi user based information system permits integrated handling of real time meteorological data from external ftp. A server-client GIS based model is integrated on the basis of real time database and ESI map to provide the result of the oil spill prediction model. End users can access through the client interface and request analysis such as oil spill prediction and GIS functions on the network as their own purpose.

Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots (ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계)

  • Ahmed, Hamdi A.;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF